
DTDevices

Generated by Doxygen 1.8.13





Contents





Chapter 1

Class Documentation

1.1 FMP10_ROU Class Reference

Provides universal access to all supported devices' functions.

Inherits NSObject.

Instance Methods

• (void) - addDelegate:

Allows unlimited delegates to be added to a single class instance.

• (void) - removeDelegate:

Removes delegate, previously added with addDelegate.

• (bool) - connectWithStreams:outputStream:error:

Connect to the fiscal device using streams.

• (void) - disconnect

Disconnects from the stream.

• (NSDictionary ∗) - command38Variant0Version0AndReturnError:

26h (38) Opening a non-fiscal receipt.

• (NSDictionary ∗) - command39Variant0Version0AndReturnError:

27h (39) Closing a non-fiscal receipt

• (bool) - command41Variant0Version0Switches:error:

29h (41) SET MEMORY SWITCHES

• (bool) - command41Variant0Version1AndReturnError:

29h (41) SET MEMORY SWITCHES

• (bool) - command42Variant0Version0InputText:error:

2Ah (42) PRINTING OF A FREE NON-FISCAL TEXT

• (bool) - command43Variant0Version0ItemIndex:dataValue:error:

2Bh (43) SETTING FOOTER AND PRINTING OPTIONS

• (bool) - command44Variant0Version0TargetLines:error:

2Ch(44) ADVANCING PAPER

• (NSDictionary ∗) - command45Variant0Version0AndReturnError:

2Dh (45) OPENING A RECEIPT FOR 90 DEGREES ROTATED TEXT

• (bool) - command46Variant0Version0RotatedTextRow:error:

2Eh(46) PRINT 90 DEGREES ROTATED TEXT



2 Class Documentation

• (NSDictionary ∗) - command47Variant0Version0AndReturnError:

2Fh(47) CLOSING A RECEIPT FOR 90 DEGREES ROTATED TEXT

• (NSDictionary ∗) - command48Variant0Version0OperatorCode:operatorPassword:tillNumber:error:

30h(48) OPENING A FISCAL CLIENT'S RECEIPT

• (bool) - command49Variant0Version0TaxGroup:itemPrice:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version1TaxGroup:itemPrice:specialTax:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version2TaxGroup:itemPrice:itemQuantity:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version3TaxGroup:itemPrice:itemQuantity:specialTax:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version4TextRow2:taxGroup:itemPrice:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version5TextRow2:taxGroup:itemPrice:specialTax:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version6TextRow2:taxGroup:itemPrice:itemQuantity:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version7TextRow2:taxGroup:itemPrice:itemQuantity:specialTax:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version8TextRow1:taxGroup:itemPrice:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version9TextRow1:taxGroup:itemPrice:specialTax:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version10TextRow1:taxGroup:itemPrice:itemQuantity:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version11TextRow1:taxGroup:itemPrice:itemQuantity:specialTax:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version12TextRow1:textRow2:taxGroup:itemPrice:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version13TextRow1:textRow2:taxGroup:itemPrice:specialTax:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version14TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant0Version15TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:specialTax←↩

:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version0TaxGroup:itemPrice:sellWithAbsoluteSumDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version1TaxGroup:itemPrice:specialTax:sellWithAbsoluteSumDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version2TaxGroup:itemPrice:itemQuantity:sellWithAbsoluteSumDiscount←↩

:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version3TaxGroup:itemPrice:itemQuantity:specialTax:sellWithAbsoluteSum←↩

Discount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version4TextRow2:taxGroup:itemPrice:sellWithAbsoluteSumDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version5TextRow2:taxGroup:itemPrice:specialTax:sellWithAbsoluteSum←↩

Discount:error:

Generated by Doxygen



1.1 FMP10_ROU Class Reference 3

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version6TextRow2:taxGroup:itemPrice:itemQuantity:sellWithAbsoluteSum←↩

Discount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version7TextRow2:taxGroup:itemPrice:itemQuantity:specialTax:sellWith←↩

AbsoluteSumDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version8TextRow1:taxGroup:itemPrice:sellWithAbsoluteSumDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version9TextRow1:taxGroup:itemPrice:specialTax:sellWithAbsoluteSum←↩

Discount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version10TextRow1:taxGroup:itemPrice:itemQuantity:sellWithAbsoluteSum←↩

Discount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version11TextRow1:taxGroup:itemPrice:itemQuantity:specialTax:sellWith←↩

AbsoluteSumDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version12TextRow1:textRow2:taxGroup:itemPrice:sellWithAbsoluteSum←↩

Discount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version13TextRow1:textRow2:taxGroup:itemPrice:specialTax:sellWith←↩

AbsoluteSumDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version14TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:sellWith←↩

AbsoluteSumDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant1Version15TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:specialTax←↩

:sellWithAbsoluteSumDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version0TaxGroup:itemPrice:sellWithPercentDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version1TaxGroup:itemPrice:specialTax:sellWithPercentDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version2TaxGroup:itemPrice:itemQuantity:sellWithPercentDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version3TaxGroup:itemPrice:itemQuantity:specialTax:sellWithPercent←↩

Discount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version4TextRow2:taxGroup:itemPrice:sellWithPercentDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version5TextRow2:taxGroup:itemPrice:specialTax:sellWithPercentDiscount←↩

:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version6TextRow2:taxGroup:itemPrice:itemQuantity:sellWithPercentDiscount←↩

:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version7TextRow2:taxGroup:itemPrice:itemQuantity:specialTax:sellWith←↩

PercentDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version8TextRow1:taxGroup:itemPrice:sellWithPercentDiscount:error:

31h(49) REGISTRATION OF SALES

Generated by Doxygen



4 Class Documentation

• (bool) - command49Variant2Version9TextRow1:taxGroup:itemPrice:specialTax:sellWithPercentDiscount←↩

:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version10TextRow1:taxGroup:itemPrice:itemQuantity:sellWithPercent←↩

Discount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version11TextRow1:taxGroup:itemPrice:itemQuantity:specialTax:sellWith←↩

PercentDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version12TextRow1:textRow2:taxGroup:itemPrice:sellWithPercentDiscount←↩

:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version13TextRow1:textRow2:taxGroup:itemPrice:specialTax:sellWithPercent←↩

Discount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version14TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:sellWith←↩

PercentDiscount:error:

31h(49) REGISTRATION OF SALES

• (bool) - command49Variant2Version15TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:specialTax←↩

:sellWithPercentDiscount:error:

31h(49) REGISTRATION OF SALES

• (NSDictionary ∗) - command50Variant0Version0StartDate:endDate:error:

32h(50) TAX RATES ENTERED DURING THE ACCOUNTED PERIOD

• (NSDictionary ∗) - command51Variant0Version0ToPrintOption:toDisplayOption:error:

33h(51) SUBTOTAL

• (NSDictionary ∗) - command51Variant0Version1ToPrintOption:toDisplayOption:subtotalWithPercent←↩

Discount:error:

33h(51) SUBTOTAL

• (NSDictionary ∗) - command51Variant0Version2ToPrintOption:toDisplayOption:subtotalWithAbsoluteSum←↩

Discount:error:

33h(51) SUBTOTAL

• (NSDictionary ∗) - command53Variant0Version0PaidMode:amountIn:error:

35h(53) CALCULATION OF A TOTAL

• (NSDictionary ∗) - command53Variant0Version1TextRow2:paidMode:amountIn:error:

35h(53) CALCULATION OF A TOTAL

• (NSDictionary ∗) - command53Variant0Version2TextRow1:paidMode:amountIn:error:

35h(53) CALCULATION OF A TOTAL

• (NSDictionary ∗) - command53Variant0Version4TextRow1:textRow2:paidMode:amountIn:error:

35h(53) CALCULATION OF A TOTAL

• (NSDictionary ∗) - command53Variant1Version0AndReturnError:

35h(53) CALCULATION OF A TOTAL

• (NSDictionary ∗) - command53Variant1Version1TextRow2:error:

35h(53) CALCULATION OF A TOTAL

• (NSDictionary ∗) - command53Variant1Version2TextRow1:error:

35h(53) CALCULATION OF A TOTAL

• (NSDictionary ∗) - command53Variant1Version3TextRow1:textRow2:error:

35h(53) CALCULATION OF A TOTAL

• (bool) - command54Variant0Version0TextIn:error:

36h(54) PRINTING A FREE FISCAL TEXT

• (NSDictionary ∗) - command56Variant0Version0AndReturnError:

38h(56) CLOSING A FISCAL RECEIPT

• (bool) - command58Variant0Version0SignPlu:itemQuantity:error:

Generated by Doxygen



1.1 FMP10_ROU Class Reference 5

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• (bool) - command58Variant0Version1SignPlu:itemQuantity:specialTax:error:

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• (bool) - command58Variant1Version0SignPlu:itemQuantity:sellWithAbsoluteSumDiscount:error:

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• (bool) - command58Variant1Version1SignPlu:itemQuantity:specialTax:sellWithAbsoluteSumDiscount:error:

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• (bool) - command58Variant2Version0SignPlu:itemQuantity:sellWithPercentDiscount:error:

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• (bool) - command58Variant2Version1SignPlu:itemQuantity:specialTax:sellWithPercentDiscount:error:

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• (bool) - command60Variant0Version0AndReturnError:

3Ch(60) CANCEL FISCAL RECEIPT

• (bool) - command61Variant0Version0TargetDate:targetTime:error:

3Dh(61) SETTING THE CLOCK - DATE AND HOUR

• (NSDictionary ∗) - command62Variant0Version0AndReturnError:

3Eh (62) READING CURRENT DATE AND HOUR

• (NSDictionary ∗) - command64Variant0Version0AndReturnError:

40h(64) LAST FISCAL CLOSURE DETAILS

• (NSDictionary ∗) - command65Variant0Version0AndReturnError:

41h(65) DAILY TOTALS

• (NSDictionary ∗) - command68Variant0Version0AndReturnError:

44h (68) THE NUMBER OF FREE FIELDS IN THE FISCAL MEMORY

• (NSDictionary ∗) - command69Variant0Version0ReportTypeOption:error:

45h(69) DAILY FINANCIAL REPORT

• (NSDictionary ∗) - command70Variant0Version0AmountInOut:error:

46h(70) INTERNAL DEBITING AND CREDITING (servICE In and Out)

• (NSDictionary ∗) - command70Variant0Version1AndReturnError:

46h(70) INTERNAL DEBITING AND CREDITING (read only)

• (bool) - command71Variant0Version0AndReturnError:

47h(71) PRINTING DIAGNOSTIC INFORMATION

• (bool) - command73Variant0Version0StartRecordNumber:endRecordNumber:error:

49H (73) DETAILED FISCAL MEMORY REPORT BY CLOSURE NUMBER

• (NSDictionary ∗) - command74Variant0Version0AndReturnError:

4Ah(74) READING THE STATUS BYTES

• (NSDictionary ∗) - command74Variant1Version0AndReturnError:

4Ah(74) READING THE STATUS BYTES

• (NSDictionary ∗) - command76Variant0Version0AndReturnError:

4Ch(76) STATUS OF THE FISCAL TRANSACTION

• (bool) - command79Variant0Version0StartDate:endDate:error:

4Fh(79) SHORT FISCAL MEMORY REPORT BY CLOSURE DATE

• (bool) - command80Variant0Version0SoundData:error:

50h(80) SOUND SIGNAL

• (NSDictionary ∗) - command83Variant0Version0InputMultiplier:inputDecimals:inputCurrency:inputEnabled←↩

TaxesArray:inputTaxGroupA:inputTaxGroupB:inputTaxGroupC:inputTaxGroupD:error:

53h(83) SETTING THE MULTIPLIER, DECIMALS, CURRENCY NAME AND DISABLED TAXES

• (NSDictionary ∗) - command83Variant1Version0AndReturnError:

53h(83) SETTING THE MULTIPLIER, DECIMALS, CURRENCY NAME AND DISABLED TAXES

• (bool) - command84Variant0Version0BarcodeType:barcodeData:error:

54h(84) PRINTING A BAR CODE

• (bool) - command84Variant0Version1BarcodeType:barcodeData:error:

Generated by Doxygen



6 Class Documentation

54h(84) PRINTING A BAR CODE

• (NSDictionary ∗) - command85Variant0Version0AdditionalPaymentTypeOption:inputAdditionalPayment←↩

Name:error:

55H(85) DIFINE ADDITIONAL PAYMENT TYPES NAME

• (NSDictionary ∗) - command85Variant0Version1AdditionalPaymentTypeOption:error:

55H(85) DIFINE ADDITIONAL PAYMENT TYPES NAME

• (NSDictionary ∗) - command86Variant0Version0AndReturnError:

56H(86) GET LATEST FISCAL MEMORY RECORD DATE

• (NSDictionary ∗) - command87Variant0Version0AndReturnError:

57H(87) GET SHIFT LENGTH

• (NSDictionary ∗) - command90Variant0Version0AndReturnError:

5Ah(90) RETURNS DIAGONSTIC INFORMATION

• (NSDictionary ∗) - command90Variant0Version1AndReturnError:

5Ah(90) RETURNS DIAGONSTIC INFORMATION

• (bool) - command94Variant0Version0StartDate:endDate:error:

5Eh(94) DETAILED FISCAL MEMORY REPORT BY CLOSURE DATE

• (bool) - command95Variant0Version0StartFiscalRecordNumber:endFiscalRecordNumber:error:

5Fh(95) SHORT FISCAL MEMORY REPORT BY CLOSURE NUMBER

• (NSDictionary ∗) - command97Variant0Version0AndReturnError:

61h(97) READING THE SET TAX RATES

• (NSDictionary ∗) - command99Variant0Version0AndReturnError:

63h(99) Reading the TAX REGISTRATION NUMBER

• (bool) - command101Variant0Version0OperatorCode:oldOperatorPassword:newOperatorPassword:error:

65h(101) SETTING THE OPERATOR'S PASSWORD

• (bool) - command102Variant0Version0OperatorCode:operatorPassword:operatorName:error:

66h(102) ENTERING OPERATOR'S NAME

• (NSDictionary ∗) - command103Variant0Version0AndReturnError:

67h(103) INFORMATION ON THE CURRENT RECEIPT

• (bool) - command105Variant0Version0AndReturnError:

68h(105) OPERATOR'S REPORT

• (NSDictionary ∗) - command107Variant0Version0AndReturnError:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant1Version0TaxGroup:itemPlu:itemGroup:singleItemPrice:replace←↩

Quantity:itemQuantity:itemName:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant2Version0ItemPlu:itemQuantity:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant3Version0ItemPlu:singleItemPrice:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant4Version0AndReturnError:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant4Version1ItemPlu:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant4Version2StartItemPlu:lastItemPlu:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant5Version0TargetItemPlu:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant6Version0TargetItemPlu:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant7Version0TargetItemPlu:error:

6Bh(107) DEFINING AND READING ITEMS

Generated by Doxygen



1.1 FMP10_ROU Class Reference 7

• (NSDictionary ∗) - command107Variant8Version0AndReturnError:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant9Version0TargetItemPlu:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant10Version0TargetItemPlu:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant11Version0AndReturnError:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant12Version0TargetItemPlu:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command107Variant12Version1TargetItemPlu:error:

6Bh(107) DEFINING AND READING ITEMS

• (NSDictionary ∗) - command108Variant0Version0ReportTypeOption:error:

6Ch (108) EXTENDED DAILY FINANCIAL REPORT

• (bool) - command109Variant0Version0ReceiptCount:error:

6Dh(109) PRINTING A DUPLICATE RECEIPT

• (NSDictionary ∗) - command110Variant0Version0AndReturnError:

6Eh(110) ADDITIONAL DAILY INFORMATION

• (NSDictionary ∗) - command111Variant0Version0PrintOption:startItemNumber:endItemNumber:error:

6Fh(111) ITEMS REPORT

• (NSDictionary ∗) - command111Variant1Version0PrintOption:startItemNumber:endItemNumber:item←↩

Group:error:

6Fh(111) ITEMS REPORT

• (NSDictionary ∗) - command111Variant2Version0PrintOption:error:

6Fh(111) ITEMS REPORT

• (NSDictionary ∗) - command112Variant0Version0OperatorCode:error:

70h(112) READING INFORMATION ON THE OPERATOR

• (NSDictionary ∗) - command113Variant0Version0AndReturnError:

71h(113) READING THE NUMBER OF THE LAST PRINTED DOCUMENT

• (NSDictionary ∗) - command114Variant0Version0FiscalRecordNumber:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (NSDictionary ∗) - command114Variant1Version0FiscalRecordNumber:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (NSDictionary ∗) - command114Variant1Version1FiscalRecordNumber1:fiscalRecordNumber2:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (NSDictionary ∗) - command114Variant2Version0FiscalRecordNumber:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (NSDictionary ∗) - command114Variant2Version1FiscalRecordNumber1:fiscalRecordNumber2:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (NSDictionary ∗) - command114Variant3Version0FiscalRecordNumber:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (NSDictionary ∗) - command114Variant3Version1FiscalRecordNumber1:fiscalRecordNumber2:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (NSDictionary ∗) - command114Variant4Version0FiscalRecordNumber:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (NSDictionary ∗) - command114Variant5Version0FiscalRecordNumber:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (NSDictionary ∗) - command114Variant6Version0FiscalRecordNumber:error:

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

• (bool) - command115Variant0Version0RowNumber:rowData:error:

73h(115) PROGRAMMING A GRAPHIC LOGO

Generated by Doxygen



8 Class Documentation

• (NSDictionary ∗) - command115Variant1Version0RowNumber:error:

73h(115) PROGRAMMING A GRAPHIC LOGO

• (NSDictionary ∗) - command120Variant0Version0AndReturnError:

78h(120) SWITCHING THE PRINTER OFF

• (NSDictionary ∗) - command122Variant0Version0AndReturnError:

7Ah(122) JOURNAL SUPPORT

• (NSDictionary ∗) - command122Variant1Version0AndReturnError:

7Ah(122) JOURNAL SUPPORT

• (NSDictionary ∗) - command122Variant1Version1AndReturnError:

7Ah(122) JOURNAL SUPPORT

• (bool) - command122Variant2Version0AndReturnError:

7Ah(122) JOURNAL SUPPORT

• (bool) - command122Variant2Version1AndReturnError:

7Ah(122) JOURNAL SUPPORT

• (bool) - command122Variant3Version0AndReturnError:

7Ah(122) JOURNAL SUPPORT

• (bool) - command122Variant3Version1AndReturnError:

7Ah(122) JOURNAL SUPPORT

• (bool) - command122Variant4Version0AndReturnError:

7Ah(122) JOURNAL SUPPORT

• (NSString ∗) - customCommand:data:error:

• (NSDictionary ∗) - diagnosticInfoGetAndReturnError:

diagnosticInfoGetAndReturnError - RETURNS DIAGONSTIC INFORMATION

• (bool) - diagnosticInfoPrintAndReturnError:

diagnosticInfoPrintAndReturnError - PRINTING DIAGNOSTIC INFORMATION

• (NSDictionary ∗) - getStatusBytesAndReturnError:

getStatusBytesAndReturnError - READING THE STATUS BYTES

• (NSDictionary ∗) - nonFiscalReceiptOpenAndReturnError:

nonFiscalReceiptOpenAndReturnError - Opening a non-fiscal receipt.

• (bool) - nonFiscalReceiptPrintText:error:

nonFiscalReceiptPrintText - PRINTING OF A FREE NON-FISCAL TEXT

• (NSDictionary ∗) - nonFiscalReceiptCloseAndReturnError:

nonFiscalReceiptCloseAndReturnError - Closing a non-fiscal receipt

• (NSDictionary ∗) - fiscalReceiptOpenAndReturnError:

• (bool) - fiscalReceiptPrintText:error:

• (bool) - fiscalReceiptSellAndReturnError:

• (NSDictionary ∗) - fiscalReceiptSubtotalAndReturnError:

• (NSDictionary ∗) - fiscalReceiptTotalAndReturnError:

• (NSDictionary ∗) - fiscalReceiptCloseAndReturnError:

• (bool) - checkAndResolveAndReturnError:

Class Methods

• (id) + sharedInstance

Generated by Doxygen



1.1 FMP10_ROU Class Reference 9

Properties

• id delegate

Adds delegate to the class.

• NSMutableArray ∗ delegates

Provides a list of currently registered delegates.

• bool deviceConnected
• int infoPrinterCodePage
• int infoMajorNumberSDKVersion
• int infoMinorNumberSDKVersion
• int infoReleaseNumberSDKVersion
• int infoBuildNumberSDKVersion
• int infoMaxLogoHigh
• int infoMaxLogoWidth
• int infoMaxHeaderLinesCount
• int infoMaxFooterLinesCount
• int infoMaxTransactionsCountInFiscalReceipt
• int infoMaxSymbolCountInSellTextRow1
• int infoMaxSymbolCountInSellTextRow2
• int infoMaxSymbolCountInNonFiscalText
• int infoMaxSymbolCountInNonFiscalRotatedText
• int infoMaxSymbolCountInFiscalText
• int infoMaxDepartmentCount
• int infoMaxItemsCount
• int infoTaxRatesMaxCount
• int infoDisplayCodePage
• int infoLastClassErrorCode
• bool infoMandatoryZReportEndOfDay
• bool infoMandatoryEKLPrintBeforeZReport
• bool infoMandatoryEKLSave
• bool infoMandatoryMonthlyReport
• bool infoMandatoryYearlyReport
• bool statusDisplayNotConnected
• bool statusTransparentDisplayMode
• bool statusFiscalMemoryMissing
• bool statusPrintingHeadOverheated
• bool statusSeconRollNoPaperPlace
• bool statusSeconRollOutOfPaper
• bool statusEndOfEKL
• bool statusDrawerOpened
• bool statusEKLNotEmpty
• bool statusEKLPrinted
• bool statusEKLNearEnd
• bool statusKLENNearEnd
• bool statusSecondRollNotEnoughPaper
• bool statusAutomaticPaperCutting
• bool statusPrintingHeadNotConnected
• bool supportEKL
• bool supportNRATerminal
• bool supportKLEN
• bool supportEIK
• bool supportServiceContractsInformation
• bool supportIOSANumber
• bool supportFiscalReceipts

Generated by Doxygen



10 Class Documentation

• bool supportRotatedFiscalReceipts
• bool supportNonFiscalReceipts
• bool supportRotatedNonFiscalReceipts
• bool supportBluetooth
• bool supportWiFi
• bool supportTCPIP
• bool supportFTP
• bool supportHTTP
• bool supportSoftwareSwitches
• bool supportClientDisplay
• bool supportDrawerOpening
• bool supportDrawerStatus
• bool supportSecondRoll
• bool supportAutoCutPaper
• bool supportAdditionalMatrixPrint
• bool supportPrintingHeadTemperatureControl
• bool supportAsynchronousMode
• bool supportTransactionsBufferForCommands
• bool supportReceiptVoid
• bool supportSaleRowVoid
• bool supportVoidReceipt
• bool supportVoidSale
• bool statusEIKSet
• bool statusSerialNumberSet
• bool statusFMNumberSet
• bool statusPrinterFiscalized
• bool statusFiscalMemoryFormated
• bool statusTaxRatesOk
• bool statusLowBattery
• bool statusGeneralErrorType1
• bool statusGeneralErrorType2
• bool statusPrintingHeadFailure
• bool statusPrinterClockNotSet
• bool statusInvalidCommand
• bool statusSyntaxError
• bool statusNRATerminalNotRespond
• bool statusRamError
• bool statusRamCleared
• bool statusCommandNotAllowed
• bool statusFieldOverflow
• bool statusFiscalMemoryFull
• bool statusFiscalMemoryReadError
• bool statusFiscalMemoryWriteError
• bool statusFiscalMemoryReadOnly
• bool statusOutOfPaper
• bool statusEndOfKLEN
• bool statusFiscalReceiptOpened
• bool statusNonFiscalReceiptOpened
• bool statusRotatedReceiptOpened
• bool statusFiscalMemoryNearEnd
• bool statusCoverWasOpened
• bool statusNotEnoughPaper
• NSString ∗ infoTaxEnabledArray
• NSString ∗ infoServiceEIKNumber
• NSString ∗ infoServiceEndDate

Generated by Doxygen



1.1 FMP10_ROU Class Reference 11

• NSString ∗ infoPrinterName
• NSString ∗ infoFirmwareRevision
• NSString ∗ infoFirmwareDateTime
• NSString ∗ infoSerialNumber
• NSString ∗ infoFiscalModuleNumber
• bool infoBluetoothDiscoverable
• NSString ∗ infoMACAddress
• NSString ∗ infoIPAddress
• NSString ∗ infoIOSANumber
• NSString ∗ infoTaxArray
• NSString ∗ infoLastErrorText
• NSString ∗ sellParameterTextRow1
• NSString ∗ sellParameterTextRow2
• NSString ∗ sellParameterTaxGroup
• NSString ∗ sellParameterSpecialTax
• NSString ∗ sellParameterPrice
• NSString ∗ sellParameterQuantity
• NSString ∗ sellParameterPLU
• NSString ∗ sellParameterDepartment
• NSString ∗ sellParameterPercent
• NSString ∗ sellParameterAbsoluteSum
• NSString ∗ sellParameterOperatorCode
• NSString ∗ sellParameterOperatorPassword
• NSString ∗ sellParameterOperatorTillNumber
• NSString ∗ subtotalParameterToPrint
• NSString ∗ subtotalParameterToDisplay
• NSString ∗ subtotalParameterPercent
• NSString ∗ subtotalParameterAbsoluteSum
• NSString ∗ totalParameterTextRow1
• NSString ∗ totalParameterTextRow2
• NSString ∗ totalParameterPaidMode
• NSString ∗ totalParameterAmount
• NSData ∗ statusBytes

1.1.1 Detailed Description

Provides universal access to all supported devices' functions.

In order to use one of the supported accessories in your program, several steps have to be performed:

• Include DTDevices.h and libdtdev.a in your project.

• Go to Frameworks and add ExternalAccessory framework

• Edit your program plist file, add new element and select "Supported external accessory protocols" from the
list, then add the protocol names of the accessories you want to connect to:
For Linea series: com.datecs.linea.pro.msr and com.datecs.linea.pro.bar
For Pinpad: com.datecs.iserial.communication and com.datecs.ppad
For iSerial: com.datecs.iserial.communication
For ESC/POS printers: com.datecs.printer.escpos

Since this SDK is based on features, the specific device is not that important, for example, if your program relies on
barcode scanning, then Linea, Pinpad or the ESC/POS printers can provide that functionality, so you can include all
their protocols.

Generated by Doxygen



12 Class Documentation

1.1.2 Method Documentation

1.1.2.1 addDelegate:()

- (void) addDelegate:

(id) newDelegate

Allows unlimited delegates to be added to a single class instance.

This is useful in the case of global class and every view can use addDelegate when the view is shown and remove←↩

Delegate when no longer needs to monitor events

Parameters

newDelegate the delegate that will be notified of Linea events

1.1.2.2 checkAndResolveAndReturnError:()

- (bool) checkAndResolveAndReturnError:

(NSError ∗∗) error

1.1.2.3 command101Variant0Version0OperatorCode:oldOperatorPassword:newOperatorPassword:error:()

- (bool) command101Variant0Version0OperatorCode:

(NSString ∗) operatorCode

oldOperatorPassword:(NSString ∗) oldOperatorPassword

newOperatorPassword:(NSString ∗) newOperatorPassword

error:(NSError ∗∗) error

65h(101) SETTING THE OPERATOR'S PASSWORD

• Data field:

1. operatorCode Operator's code (1 to 16)

2. oldOperatorPassword Old password (4 to 8 digits)

3. newOperatorPassword New password (4 to 8 digits)

• Response:

1. None

Sets one of the 16 operator's passwords, which will be demanded upon opening a fiscal receipt. After three erro-
neous password entries, the printer will block, it must then be switched OFF and ON again to continue operating.
After initialization or reset of the operational memory, all 16 passwords are "0000".

Generated by Doxygen



1.1 FMP10_ROU Class Reference 13

Parameters

operatorCode - Operator's code (1 to 16)

oldOperatorPassword - Old password (4 to 8 digits)

newOperatorPassword - New password (4 to 8 digits)

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.4 command102Variant0Version0OperatorCode:operatorPassword:operatorName:error:()

- (bool) command102Variant0Version0OperatorCode:

(NSString ∗) operatorCode

operatorPassword:(NSString ∗) operatorPassword

operatorName:(NSString ∗) operatorName

error:(NSError ∗∗) error

66h(102) ENTERING OPERATOR'S NAME

• Data field:

1. OpCode Operator's code (1 to 16)

2. Pwd Password (4 to 8 digits)

3. OpName Name of the operator (up to 30 symbols)

• Response:

1. None

Enters one of the 16 operator names. The number and name of the operator are printed at the beginning of each
fiscal (clients) receipt. After three erroneous password entries, the printer will block, it must then be switched OFF
and ON again to continue operating. After initialization or reset of the operational memory, all 16 password locations
are empty.

Parameters

operatorCode - Operator's code (1 to 16)

operatorPassword - Password (4 to 8 digits)

operatorName - Name of the operator (up to 30 symbols)

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



14 Class Documentation

1.1.2.5 command103Variant0Version0AndReturnError:()

- (NSDictionary ∗) command103Variant0Version0AndReturnError:

(NSError ∗∗) error

67h(103) INFORMATION ON THE CURRENT RECEIPT

• Data field: None

• Response:

1. saleVoidIsPossible Possible/impossible return (sale registration with a negative sign) ['0' / '1']

2. taxGroupA The sum accumulated under tax A

3. taxGroup|B The sum accumulated under tax B

4. taxGroupC The sum accumulated under tax C

5. taxGroupD The sum accumulated under tax D

6. taxGroupE The sum accumulated under tax E

7. SpecTax The special tax sum

The command offers information on sums accumulated so far under the different tax groups and whether it is
possible to return the registered items sold.

Returns

NSDictionary

• KeyValue - @"saleVoidIsPossible" - Possible/impossible return (sale registration with a negative sign) ['0'
/ '1']

• KeyValue - @"taxGroupA" - The sum accumulated under tax A

• KeyValue - @"taxGroupB" - The sum accumulated under tax B

• KeyValue - @"taxGroupC" - The sum accumulated under tax C

• KeyValue - @"taxGroupD" - The sum accumulated under tax D

• KeyValue - @"taxGroupE" - The sum accumulated under tax E

• KeyValue - @"specialTax" - The special tax sum

1.1.2.6 command105Variant0Version0AndReturnError:()

- (bool) command105Variant0Version0AndReturnError:

(NSError ∗∗) error

68h(105) OPERATOR'S REPORT

• Data field: None

• Response: None

Information on the sales, performed by the operators, is printed out where for each separate operator the following
data is printed out: name, individual number, number of fiscal receipts, discharges made, surcharge, sum adjust-
ments and accumulated total sums.

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



1.1 FMP10_ROU Class Reference 15

1.1.2.7 command107Variant0Version0AndReturnError:()

- (NSDictionary ∗) command107Variant0Version0AndReturnError:

(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

• Data field:

1. None

• Response:

1. errorCode - One byte, showing the result from the operation and having the following meaning:

(a) 'P' Successful command

(b) 'F' Unsuccessful command

2. maximumItemCount Total programmable article count (13000 for this printer).

3. currentItemCount Programmed article count.

4. maximumItemNameLength Maximal article name length (36 for this printer).

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

• KeyValue - @"maximumItemCount" - Total programmable article count (13000 for this printer).

• KeyValue - @"currentItemCount" - Programmed article count.

• KeyValue - @"maximumItemNameLength" - Maximal article name length (36 for this printer).

1.1.2.8 command107Variant10Version0TargetItemPlu:error:()

- (NSDictionary ∗) command107Variant10Version0TargetItemPlu:

(NSString ∗) targetItemPlu

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Returning the data on the sold item with the greatest number.

• Input data:

Generated by Doxygen



16 Class Documentation

1. targetItemPlu

• Responce:

1. errorCode

2. itemPlu

3. taxGroup

4. itemGroup

5. singleItemPrice

6. accumulatedSum

7. soldItemQuantity

8. availableItemQuantity

9. itemName

• targetItemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

• itemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• taxGroup Tax group - 1 byte

• itemGroup Article group. 2 digits (01 - 99).

• singleItemPrice Singular price. A floating-point number - decimal places depend on the count set using
command 83 (53h).

• accumulatedSum Accumulated sum for this article.

• soldItemQuantity Accumulated quantity - a floating-point number with 3 decimal places.

• availableItemQuantity Available quantity of this article.

• itemName The name of the item. Up to 36 symbols.

Note: If the parameter PLU is present, then the first sold article with number lower than or equal to PLU is returned.
If missing, PLU=999999999 is assumed.

Parameters

targetItemPlu - Individual number of the item. 9 digits (000000001 to 999999999)

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

Generated by Doxygen



1.1 FMP10_ROU Class Reference 17

• KeyValue - @"itemPlu" - Individual number of the item. 9 digits (000000001 to 999999999)

• KeyValue - @"taxGroup" - Tax group - 1 byte

• KeyValue - @"itemGroup" - Article group. 2 digits (01 - 99).

• KeyValue - @"singleItemPrice" - Singular price. A floating-point number - decimal places depend on the
count set using command 83 (53h).

• KeyValue - @"accumulatedSum" - Accumulated sum for this article.

• KeyValue - @"soldItemQuantity" - Accumulated quantity - a floating-point number with 3 decimal places.

• KeyValue - @"availableItemQuantity" - Available quantity of this article.

• KeyValue - @"itemName" - The name of the item. Up to 36 symbols.

1.1.2.9 command107Variant11Version0AndReturnError:()

- (NSDictionary ∗) command107Variant11Version0AndReturnError:

(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Returning the data on the next found sold item. Depending of the starting command, the articles are enumerated in
ascending or descending order.

• Input data:

1. targetItemPlu

• Responce:

1. errorCode

2. itemPlu

3. taxGroup

4. itemGroup

5. singleItemPrice

6. accumulatedSum

7. soldItemQuantity

8. availableItemQuantity

9. itemName

• targetItemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

• itemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• taxGroup Tax group - 1 byte

• itemGroup Article group. 2 digits (01 - 99).

• singleItemPrice Singular price. A floating-point number - decimal places depend on the count set using
command 83 (53h).

• accumulatedSum Accumulated sum for this article.

• soldItemQuantity Accumulated quantity - a floating-point number with 3 decimal places.

• availableItemQuantity Available quantity of this article.

• itemName The name of the item. Up to 36 symbols.

Note: The process of reading has ended with the last available item.

Generated by Doxygen



18 Class Documentation

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

• KeyValue - @"itemPlu" - Individual number of the item. 9 digits (000000001 to 999999999)

• KeyValue - @"taxGroup" - Tax group - 1 byte

• KeyValue - @"itemGroup" - Article group. 2 digits (01 - 99).

• KeyValue - @"singleItemPrice" - Singular price. A floating-point number - decimal places depend on the
count set using command 83 (53h).

• KeyValue - @"accumulatedSum" - Accumulated sum for this article.

• KeyValue - @"soldItemQuantity" - Accumulated quantity - a floating-point number with 3 decimal places.

• KeyValue - @"availableItemQuantity" - Available quantity of this article.

• KeyValue - @"itemName" - The name of the item. Up to 36 symbols.

1.1.2.10 command107Variant12Version0TargetItemPlu:error:()

- (NSDictionary ∗) command107Variant12Version0TargetItemPlu:

(NSString ∗) targetItemPlu

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Returning the data on the first free item.

• Input data: targetItemPlu

• Responce: errorCode

1. itemPlu

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

• itemPlu Individual number of the item. 9 digits (000000001 to 999999999)

If the parameter PLU is present, then the first free (not programmed) article with number greater than or equal to
PLU is returned. If missing, PLU=1 is assumed.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 19

Parameters

targetItemPlu - Individual number of the item. 9 digits (000000001 to 999999999)

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

• KeyValue - @"itemPlu" - Individual number of the item. 9 digits (000000001 to 999999999)

1.1.2.11 command107Variant12Version1TargetItemPlu:error:()

- (NSDictionary ∗) command107Variant12Version1TargetItemPlu:

(NSString ∗) targetItemPlu

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Returning the data on the last free item.

• Input data: targetItemPlu

• Responce: errorCode

1. itemPlu

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

• itemPlu Individual number of the item. 9 digits (000000001 to 999999999)

If the parameter PLU is present, then the first free (not programmed) article with number lower than or equal to PLU
is returned. If missing, PLU=999999999 is assumed.

Parameters

targetItemPlu - Individual number of the item. 9 digits (000000001 to 999999999)

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Generated by Doxygen



20 Class Documentation

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

• KeyValue - @"itemPlu" - Individual number of the item. 9 digits (000000001 to 999999999)

1.1.2.12 command107Variant1Version0TaxGroup:itemPlu:itemGroup:singleItemPrice:replaceQuantity:itemQuantity:itemName←↩

:error:()

- (NSDictionary ∗) command107Variant1Version0TaxGroup:

(NSString ∗) taxGroup

itemPlu:(NSString ∗) itemPlu

itemGroup:(NSString ∗) itemGroup

singleItemPrice:(NSString ∗) singleItemPrice

replaceQuantity:(NSString ∗) replaceQuantity

itemQuantity:(NSString ∗) itemQuantity

itemName:(NSString ∗) itemName

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

• Input data:

1. taxGroup

2. itemPlu

3. itemGroup

4. singleItemPrice

5. replaceQuantity

6. itemQuantity

7. itemName

• Response:

1. ErrorCode

• taxGroup Tax group. One byte ('A', 'B', 'C', 'D' or 'E').

• itemPlu Number of the item (1 to 999999999)

• itemGroup Article group (1 - 99).

• singleItemPrice Singular price - up to 8 meaningful digits.

• replaceQuantity A non-mandatory parameter - one byte with value 'A'. Changes the meaning of the next
parameter (Quantity).

• itemQuantity A number with up to 3 decimals - the available quantity of the article. If Replace is present, then
the available quantity is replaced with this parameter, otherwise it is added to the old value (if the article is
already programmed, of course). Every sale command of this article will decrease this value.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 21

• itemName Name of the item - up to 36 bytes.

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

Up to 13000 different items may be programmed and the command will be rejected if a similar item has already
been programmed in the memory of printer and sales of this item have been registered.

Parameters

taxGroup - Tax group. One byte ('A', 'B', 'C', 'D' or 'E').

itemPlu - Number of the item (1 to 999999999)

itemGroup - Article group (1 - 99).

singleItemPrice - Singular price - up to 8 meaningful digits.

replaceQuantity - A non-mandatory parameter - one byte with value 'A'. Changes the meaning of the next
parameter (Quantity).

itemQuantity - A number with up to 3 decimals - the available quantity of the article. If Replace is present,
then the available quantity is replaced with this parameter, otherwise it is added to the old
value (if the article is already programmed, of course). Every sale command of this article
will decrease this value.

itemName - Name of the item - up to 36 bytes.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

1.1.2.13 command107Variant2Version0ItemPlu:itemQuantity:error:()

- (NSDictionary ∗) command107Variant2Version0ItemPlu:

(NSString ∗) itemPlu

itemQuantity:(NSString ∗) itemQuantity

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

• Input data:

1. itemPlu

2. itemQuantity

Generated by Doxygen



22 Class Documentation

• Response:

1. ErrorCode

• itemPlu Article number (1 to 999999999).

• itemQuantity Quantity correction - a floating-point number with 3 decimal places. Positive number increases
the available quantity, negative decreases it.

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

Changing the quantity is possible, if the article is programmed.

Parameters

itemPlu - Article number (1 to 999999999).

itemQuantity - Quantity correction - a floating-point number with 3 decimal places. Positive number increases
the available quantity, negative decreases it.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

1.1.2.14 command107Variant3Version0ItemPlu:singleItemPrice:error:()

- (NSDictionary ∗) command107Variant3Version0ItemPlu:

(NSString ∗) itemPlu

singleItemPrice:(NSString ∗) singleItemPrice

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Change the price of an item

• Input data:

1. itemPlu

2. singleItemPrice

• Response:

Generated by Doxygen



1.1 FMP10_ROU Class Reference 23

1. ErrorCode

• itemPlu Article number (1 to 999999999).

• singleItemPrice Singular price - up to 8 meaningful digits.

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

Changing the price is possible, if the article is programmed and no sales of this article are made in the fiscal receipt
(if a fiscal receipt is open).

Parameters

itemPlu - Article number (1 to 999999999).

singleItemPrice - Singular price - up to 8 meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"" - One byte, showing the result from the operation and having the following meaning:

• 'P' Successful command

• 'F' Unsuccessful command

1.1.2.15 command107Variant4Version0AndReturnError:()

- (NSDictionary ∗) command107Variant4Version0AndReturnError:

(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Delete all items with non-zero accumulated sums.

• Input data:

1. None

• Responce:

1. ErrorCode

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

NOTE: Delete all items with non-zero accumulated sums.

Generated by Doxygen



24 Class Documentation

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

1.1.2.16 command107Variant4Version1ItemPlu:error:()

- (NSDictionary ∗) command107Variant4Version1ItemPlu:

(NSString ∗) itemPlu

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

• Input data:

1. itemPlu

• Responce:

1. errorCode

• itemPlu Deletes article with selected number if there are no accumulated sums.

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

Note: Deletes article with selected number if there are no accumulated sums.

Parameters

itemPlu - Deletes article with selected number if there are no accumulated sums.
error pointer to NSError object, where error information is stored in case function fails. You can pass nil if

you don't want that information

Returns

NSDictionary

Generated by Doxygen



1.1 FMP10_ROU Class Reference 25

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

1.1.2.17 command107Variant4Version2StartItemPlu:lastItemPlu:error:()

- (NSDictionary ∗) command107Variant4Version2StartItemPlu:

(NSString ∗) startItemPlu

lastItemPlu:(NSString ∗) lastItemPlu

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

• Input data:

1. startItemPlu

2. lastItemPlu

• Responce:

1. errorCode

• startItemPlu,lastItemPlu Deletes the articles within a set interval which do not have accumulated sums.

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

Note: Deletes the articles within a set interval which do not have accumulated sums.

Parameters

startItemPlu - Starting number

lastItemPlu - Last number (End of the interval)

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

Generated by Doxygen



26 Class Documentation

1.1.2.18 command107Variant5Version0TargetItemPlu:error:()

- (NSDictionary ∗) command107Variant5Version0TargetItemPlu:

(NSString ∗) targetItemPlu

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Reading Item data

• Input data:

1. targetItemPlu

• Responce:

1. errorCode

2. itemPlu

3. taxGroup

4. itemGroup

5. singleItemPrice

6. accumulatedSum

7. soldItemQuantity

8. availableItemQuantity

9. itemName

• targetItemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

• itemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• taxGroup Tax group - 1 byte

• itemGroup Article group. 2 digits (01 - 99).

• singleItemPrice Singular price. A floating-point number - decimal places depend on the count set using
command 83 (53h).

• accumulatedSum Accumulated sum for this article.

• soldItemQuantity Accumulated quantity - a floating-point number with 3 decimal places.

• availableItemQuantity Available quantity of this article.

• itemName The name of the item. Up to 36 symbols.

If the item cannot be found, one 'F' byte is returned.

Parameters

targetItemPlu - Individual number of the item. 9 digits (000000001 to 999999999)

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 27

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

• KeyValue - @"itemPlu" - Individual number of the item. 9 digits (000000001 to 999999999)

• KeyValue - @"taxGroup" - Tax group - 1 byte

• KeyValue - @"itemGroup" - Article group. 2 digits (01 - 99).

• KeyValue - @"singleItemPrice" - Singular price. A floating-point number - decimal places depend on the
count set using command 83 (53h).

• KeyValue - @"accumulatedSum" - Accumulated sum for this article.

• KeyValue - @"soldItemQuantity" - Accumulated quantity - a floating-point number with 3 decimal places.

• KeyValue - @"availableItemQuantity" - Available quantity of this article.

• KeyValue - @"itemName" - The name of the item. Up to 36 symbols.

1.1.2.19 command107Variant6Version0TargetItemPlu:error:()

- (NSDictionary ∗) command107Variant6Version0TargetItemPlu:

(NSString ∗) targetItemPlu

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Returning the data on the first found programmed item.

• Input data:

1. targetItemPlu

• Responce:

1. errorCode

2. itemPlu

3. taxGroup

4. itemGroup

5. singleItemPrice

6. accumulatedSum

7. soldItemQuantity

8. availableItemQuantity

9. itemName

• targetItemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

Generated by Doxygen



28 Class Documentation

• itemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• taxGroup Tax group - 1 byte

• itemGroup Article group. 2 digits (01 - 99).

• singleItemPrice Singular price. A floating-point number - decimal places depend on the count set using
command 83 (53h).

• accumulatedSum Accumulated sum for this article.

• soldItemQuantity Accumulated quantity - a floating-point number with 3 decimal places.

• availableItemQuantity Available quantity of this article.

• itemName The name of the item. Up to 36 symbols.

Note: If the parameter PLU is present, then the first programmed article with number greater than or equal to PLU
is returned. If missing, PLU=1 is assumed. The returned data is similar to the: "command107Variant5Version0"

Parameters

targetItemPlu - Individual number of the item. 9 digits (000000001 to 999999999)

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

• KeyValue - @"itemPlu" - Individual number of the item. 9 digits (000000001 to 999999999)

• KeyValue - @"taxGroup" - Tax group - 1 byte

• KeyValue - @"itemGroup" - Article group. 2 digits (01 - 99).

• KeyValue - @"singleItemPrice" - Singular price. A floating-point number - decimal places depend on the
count set using command 83 (53h).

• KeyValue - @"accumulatedSum" - Accumulated sum for this article.

• KeyValue - @"soldItemQuantity" - Accumulated quantity - a floating-point number with 3 decimal places.

• KeyValue - @"availableItemQuantity" - Available quantity of this article.

• KeyValue - @"itemName" - The name of the item. Up to 36 symbols.

1.1.2.20 command107Variant7Version0TargetItemPlu:error:()

- (NSDictionary ∗) command107Variant7Version0TargetItemPlu:

(NSString ∗) targetItemPlu

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Returning the data on the programmed item with the greatest number.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 29

• Input data:

1. targetItemPlu

• Responce:

1. errorCode

2. itemPlu

3. taxGroup

4. itemGroup

5. singleItemPrice

6. accumulatedSum

7. soldItemQuantity

8. availableItemQuantity

9. itemName

• targetItemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

• itemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• taxGroup Tax group - 1 byte

• itemGroup Article group. 2 digits (01 - 99).

• singleItemPrice Singular price. A floating-point number - decimal places depend on the count set using
command 83 (53h).

• accumulatedSum Accumulated sum for this article.

• soldItemQuantity Accumulated quantity - a floating-point number with 3 decimal places.

• availableItemQuantity Available quantity of this article.

• itemName The name of the item. Up to 36 symbols.

Note: If the parameter PLU is present, then the first programmed article with number lower than or equal to PLU is
returned. If missing, PLU=999999999 is assumed.

Parameters

targetItemPlu - Individual number of the item. 9 digits (000000001 to 999999999)

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

Generated by Doxygen



30 Class Documentation

• 'F' Unsuccessful command

• KeyValue - @"itemPlu" - Individual number of the item. 9 digits (000000001 to 999999999)

• KeyValue - @"taxGroup" - Tax group - 1 byte

• KeyValue - @"itemGroup" - Article group. 2 digits (01 - 99).

• KeyValue - @"singleItemPrice" - Singular price. A floating-point number - decimal places depend on the
count set using command 83 (53h).

• KeyValue - @"accumulatedSum" - Accumulated sum for this article.

• KeyValue - @"soldItemQuantity" - Accumulated quantity - a floating-point number with 3 decimal places.

• KeyValue - @"availableItemQuantity" - Available quantity of this article.

• KeyValue - @"itemName" - The name of the item. Up to 36 symbols.

1.1.2.21 command107Variant8Version0AndReturnError:()

- (NSDictionary ∗) command107Variant8Version0AndReturnError:

(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Returning the data on the next found programmed item. Depending of the starting command, the articles are
enumerated in ascending or descending order.

• Input data:

1. targetItemPlu

• Responce:

1. errorCode

2. itemPlu

3. taxGroup

4. itemGroup

5. singleItemPrice

6. accumulatedSum

7. soldItemQuantity

8. availableItemQuantity

9. itemName

• targetItemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

• itemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• taxGroup Tax group - 1 byte

• itemGroup Article group. 2 digits (01 - 99).

Generated by Doxygen



1.1 FMP10_ROU Class Reference 31

• singleItemPrice Singular price. A floating-point number - decimal places depend on the count set using
command 83 (53h).

• accumulatedSum Accumulated sum for this article.

• soldItemQuantity Accumulated quantity - a floating-point number with 3 decimal places.

• availableItemQuantity Available quantity of this article.

• itemName The name of the item. Up to 36 symbols.

Note: The last three commands are used to receive a list of programmed items. The subcommand 'F' or 'L' is
followed by 'N' until the response 'F' comes. This means that the process of reading has ended with the last
available item.

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

• KeyValue - @"itemPlu" - Individual number of the item. 9 digits (000000001 to 999999999)

• KeyValue - @"taxGroup" - Tax group - 1 byte

• KeyValue - @"itemGroup" - Article group. 2 digits (01 - 99).

• KeyValue - @"singleItemPrice" - Singular price. A floating-point number - decimal places depend on the
count set using command 83 (53h).

• KeyValue - @"accumulatedSum" - Accumulated sum for this article.

• KeyValue - @"soldItemQuantity" - Accumulated quantity - a floating-point number with 3 decimal places.

• KeyValue - @"availableItemQuantity" - Available quantity of this article.

• KeyValue - @"itemName" - The name of the item. Up to 36 symbols.

1.1.2.22 command107Variant9Version0TargetItemPlu:error:()

- (NSDictionary ∗) command107Variant9Version0TargetItemPlu:

(NSString ∗) targetItemPlu

error:(NSError ∗∗) error

6Bh(107) DEFINING AND READING ITEMS

Returning the data on the first sold item.

• Input data:

1. targetItemPlu

Generated by Doxygen



32 Class Documentation

• Responce:

1. errorCode

2. itemPlu

3. taxGroup

4. itemGroup

5. singleItemPrice

6. accumulatedSum

7. soldItemQuantity

8. availableItemQuantity

9. itemName

• targetItemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

• itemPlu Individual number of the item. 9 digits (000000001 to 999999999)

• taxGroup Tax group - 1 byte

• itemGroup Article group. 2 digits (01 - 99).

• singleItemPrice Singular price. A floating-point number - decimal places depend on the count set using
command 83 (53h).

• accumulatedSum Accumulated sum for this article.

• soldItemQuantity Accumulated quantity - a floating-point number with 3 decimal places.

• availableItemQuantity Available quantity of this article.

• itemName The name of the item. Up to 36 symbols.

Note: If the parameter PLU is present, then the first sold article with number greater than or equal to PLU is returned.
If missing, PLU=1 is assumed.

Parameters

targetItemPlu - Individual number of the item. 9 digits (000000001 to 999999999)

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

• KeyValue - @"itemPlu" - Individual number of the item. 9 digits (000000001 to 999999999)

Generated by Doxygen



1.1 FMP10_ROU Class Reference 33

• KeyValue - @"taxGroup" - Tax group - 1 byte

• KeyValue - @"itemGroup" - Article group. 2 digits (01 - 99).

• KeyValue - @"singleItemPrice" - Singular price. A floating-point number - decimal places depend on the
count set using command 83 (53h).

• KeyValue - @"accumulatedSum" - Accumulated sum for this article.

• KeyValue - @"soldItemQuantity" - Accumulated quantity - a floating-point number with 3 decimal places.

• KeyValue - @"availableItemQuantity" - Available quantity of this article.

• KeyValue - @"itemName" - The name of the item. Up to 36 symbols.

1.1.2.23 command108Variant0Version0ReportTypeOption:error:()

- (NSDictionary ∗) command108Variant0Version0ReportTypeOption:

(NSString ∗) reportTypeOption

error:(NSError ∗∗) error

6Ch (108) EXTENDED DAILY FINANCIAL REPORT

• Data field:

1. reportTypeOption

• Response:

1. fiscalRecordNumber

2. totalSumForTheDay

3. totalSumInTaxGroupA,

4. totalSumInTaxGroupB,

5. totalSumInTaxGroupC,

6. totalSumInTaxGroupD,

7. totalSumInTaxGroupE,

8. totalSumInSpecialTax

• reportTypeOption Parameter controlling the type of generated report.

1. '0' A Z-report is printed. The printout ends with inscriptions "NON-FISCAL RECEIPT" if the printer is not
fiscalised.

2. '2' A X-report is generated, i.e., no entry into the fiscal memory is made and no closures are performed.
The printout ends with inscription "NON-FISCAL RECEIPT". The same actions may be generated
directly from the printer if during switching on the "FEED" button is hold for 2 to 4 seconds.

3. N The presence of this symbol at the end of the data cancels the option to clear the data accumulated
on the operators during a Z-report.

4. A The presence of this symbol at the end of the data cancels the option to clear the data about sold
article quantities during a Z-report.

• fiscalRecordNumber Fiscal closure (Daily report) number - 4 bytes.

• totalSumForTheDay The sum of all sales for the day - 12 bytes with a sign.

• totalSumInTaxGroupX The totals under all tax categories - A, B, C, D and E - 12 bytes with a sign.

• totalSumInSpecialTax Special tax sum (12 bytes with sign).

The command with option '0' (Z-report) must be executed immediately after printing and deleting the electronic
journal. If there is information in the journal, the command is not permitted. In the beginning is printed a list of the
sold articles with PLU's less or equal than 100.

Generated by Doxygen



34 Class Documentation

Parameters

reportTypeOption - Parameter controlling the type of generated report.

• '0' A Z-report is printed. The printout ends with inscriptions "NON-FISCAL
RECEIPT" if the printer is not fiscalised.

• '2' A X-report is generated, i.e., no entry into the fiscal memory is made and no
closures are performed. The printout ends with inscription "NON-FISCAL
RECEIPT". The same actions may be generated directly from the printer if during
switching on the <FEED> button is hold for 2 to 4 seconds.

• N The presence of this symbol at the end of the data cancels the option to clear the
data accumulated on the operators during a Z-report.

• A The presence of this symbol at the end of the data cancels the option to clear the
data about sold article quantities during a Z-report.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"fiscalRecordNumber" - Fiscal closure (Daily report) number - 4 bytes.

• KeyValue - @"totalSumForTheDay" - The sum of all sales for the day - 12 bytes with a sign.

• KeyValue - @"totalSumInTaxGroupA" - The total under tax category - 12 bytes with a sign.

• KeyValue - @"totalSumInTaxGroupB" - The total under tax category - 12 bytes with a sign.

• KeyValue - @"totalSumInTaxGroupC" - The total under tax category - 12 bytes with a sign.

• KeyValue - @"totalSumInTaxGroupD" - The total under tax category - 12 bytes with a sign.

• KeyValue - @"totalSumInTaxGroupE" - The total under tax category - 12 bytes with a sign.

• KeyValue - @"totalSumInSpecialTax" - Special tax sum (12 bytes with sign).

1.1.2.24 command109Variant0Version0ReceiptCount:error:()

- (bool) command109Variant0Version0ReceiptCount:

(NSString ∗) receiptCount

error:(NSError ∗∗) error

6Dh(109) PRINTING A DUPLICATE RECEIPT

• Data field: receiptCount

• Response: None

• receiptCount Number of duplicate receipts (only a value of 1 or 2 is accepted!).

The command initiates the printing of a copy of the last closed receipt containing registered sales. Immediately
after the tax registration number the inscription "DUPLICATE" is printed out in bold letters. The printer will refuse to
execute this command twice.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 35

Parameters

receiptCount - Number of duplicate receipts (only a value of 1 or 2 is accepted!).

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.25 command110Variant0Version0AndReturnError:()

- (NSDictionary ∗) command110Variant0Version0AndReturnError:

(NSError ∗∗) error

6Eh(110) ADDITIONAL DAILY INFORMATION

• Data field: None

• Response:

1. paidInCash

2. paidWithCreditCart

3. paidWithDebitCard

4. paidWithCheque

5. paidInAdditionalPaymentType1

6. paidInAdditionalPaymentType2

7. paidInAdditionalPaymentType3

8. paidInAdditionalPaymentType4

9. currentFiscalRecordNumber

10. nextFiscalReceiptNumber

• paidInCash Paid in cash

• paidWithCreditCart Payment credited

• paidWithDebitCard Paid with a debit card

• paidWithCheque Paid with a cheque

• paidInAdditionalPaymentTypeX Payd with one of the additional payment types ('I', 'J', 'K', 'L').

• currentFiscalRecordNumber Current (last) fiscal entry

• nextFiscalReceiptNumber Number of the next fiscal receipt

Returns information on distribution of the daily sum according to terms of payment used.

Generated by Doxygen



36 Class Documentation

Returns

NSDictionary

• KeyValue - @"paidInCash" - Paid in cash

• KeyValue - @"paidWithCreditCart" - Payment credited

• KeyValue - @"paidWithDebitCard" - Paid with a debit card

• KeyValue - @"paidWithCheque" - Paid with a cheque

• KeyValue - @"paidInAdditionalPaymentType1" - Payd with one of the additional payment types ('I').

• KeyValue - @"paidInAdditionalPaymentType2" - Payd with one of the additional payment types ('J').

• KeyValue - @"paidInAdditionalPaymentType3" - Payd with one of the additional payment types ('K').

• KeyValue - @"paidInAdditionalPaymentType4" - Payd with one of the additional payment types ('L').

• KeyValue - @"currentFiscalRecordNumber" - Current (last) fiscal entry

• KeyValue - @"nextFiscalReceiptNumber" - Number of the next fiscal receipt

1.1.2.26 command111Variant0Version0PrintOption:startItemNumber:endItemNumber:error:()

- (NSDictionary ∗) command111Variant0Version0PrintOption:

(NSString ∗) printOption

startItemNumber:(NSString ∗) startItemNumber

endItemNumber:(NSString ∗) endItemNumber

error:(NSError ∗∗) error

6Fh(111) ITEMS REPORT

Data field:

1. printOption

2. startItemNumber

3. endItemNumber Reponse:

4. errorCode

• printOption Defines the type of information under print. Possible values:

1. - 'S' Only sold items are printed out. The data on these items include: the individual number, VAT group,
group, name, single price, sold quantity and total sum for the day.

2. - 'P' All programmed items are printed out, containing their number, VAT group, group, name, sold
quantity, available quantity and single price.

• startItemNumber First article number (PLU) printed. PLUs less than this are not included in the report.
Default: 1.

• endItemNumber Last article number (PLU) printed. PLUs greater than this are not included in the report.
Default: 999999999.

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

Items are arranged according to their individual numbers. When a Z-report is printed, then the accumulated sums
are cleared, if the parameter 'A' is not present in the command line.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 37

Parameters

printOption - Defines the type of information under print. Possible values:

• - 'S' Only sold items are printed out. The data on these items include: the individual
number, VAT group, group, name, single price, sold quantity and total sum for the day.

• - 'P' All programmed items are printed out, containing their number, VAT group,
group, name, sold quantity, available quantity and single price.

startItemNumber - First article number (PLU) printed. PLUs less than this are not included in the report.
Default: 1.

endItemNumber - Last article number (PLU) printed. PLUs greater than this are not included in the report.
Default: 999999999.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

1.1.2.27 command111Variant1Version0PrintOption:startItemNumber:endItemNumber:itemGroup:error:()

- (NSDictionary ∗) command111Variant1Version0PrintOption:

(NSString ∗) printOption

startItemNumber:(NSString ∗) startItemNumber

endItemNumber:(NSString ∗) endItemNumber

itemGroup:(NSString ∗) itemGroup

error:(NSError ∗∗) error

6Fh(111) ITEMS REPORT

Data field:

• printOption Defines the type of information under print. Possible values:

1. - 'S' Only sold items are printed out. The data on these items include: the individual number, VAT group,
group, name, single price, sold quantity and total sum for the day.

2. - 'P' All programmed items are printed out, containing their number, VAT group, group, name, sold
quantity, available quantity and single price.

• startItemNumber First article number (PLU) printed. PLUs less than this are not included in the report.
Default: 1.

• endItemNumber Last article number (PLU) printed. PLUs greater than this are not included in the report.
Default: 999999999.

• itemGroup A number from 1 to 99. If present, only articles from this group are printed, otherwise all articles
are printed.

Generated by Doxygen



38 Class Documentation

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command Reponse:

errorCode

Items are arranged according to their individual numbers. When a Z-report is printed, then the accumulated sums
are cleared, if the parameter 'A' is not present in the command line.

Parameters

printOption - Defines the type of information under print. Possible values:

• 'S' Only sold items are printed out. The data on these items include: the individual
number, VAT group, group, name, single price, sold quantity and total sum for the day.

• 'P' All programmed items are printed out, containing their number, VAT group, group,
name, sold quantity, available quantity and single price.

startItemNumber - First article number (PLU) printed. PLUs less than this are not included in the report.
Default: 1.

endItemNumber - Last article number (PLU) printed. PLUs greater than this are not included in the report.
Default: 999999999.

itemGroup - A number from 1 to 99. If present, only articles from this group are printed, otherwise all
articles are printed.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

1.1.2.28 command111Variant2Version0PrintOption:error:()

- (NSDictionary ∗) command111Variant2Version0PrintOption:

(NSString ∗) printOption

error:(NSError ∗∗) error

6Fh(111) ITEMS REPORT

Data field:

1. printOption Reponse:

2. errorCode

Generated by Doxygen



1.1 FMP10_ROU Class Reference 39

• printOption Defines the type of information under print. Possible values:

1. - 'S' Only sold items are printed out. The data on these items include: the individual number, VAT group,
group, name, single price, sold quantity and total sum for the day.

2. - 'P' All programmed items are printed out, containing their number, VAT group, group, name, sold
quantity, available quantity and single price.

• errorCode One byte, showing the result from the operation and having the following meaning:

1. 'P' Successful command

2. 'F' Unsuccessful command

Items are arranged according to their individual numbers. When a Z-report is printed, then the accumulated sums
are cleared, if the parameter 'A' is not present in the command line.

Parameters

printOption - Defines the type of information under print. Possible values:

• - 'S' Only sold items are printed out. The data on these items include: the individual
number, VAT group, group, name, single price, sold quantity and total sum for the day.

• - 'P' All programmed items are printed out, containing their number, VAT group, group,
name, sold quantity, available quantity and single price.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil
if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'P' Successful command

• 'F' Unsuccessful command

1.1.2.29 command112Variant0Version0OperatorCode:error:()

- (NSDictionary ∗) command112Variant0Version0OperatorCode:

(NSString ∗) operatorCode

error:(NSError ∗∗) error

70h(112) READING INFORMATION ON THE OPERATOR

• Data field:

1. operatorCode

• Response:

1. receiptCountForOperator

Generated by Doxygen



40 Class Documentation

2. registeredSalesCountForOperator

3. totalAccumulatedSum

4. discountCountForOperator

5. totalDiscounts

6. surchargeCountForOperator

7. totalSurcharges

8. voidCountForOperator

9. totalVoidSum

10. operatorName

11. operatorPassword

• operatorCode Number of the operator (1 to 16)

• receiptCountForOperator Number of fiscal receipts, issued by the operator

• registeredSalesCountForOperator Number of registered sales

• totalAccumulatedSum Total accumulated sum

• discountCountForOperator Number of discounts

• totalDiscounts Total number of discounts

• surchargeCountForOperator Number of surcharges

• totalSurcharges Total number of surcharges made

• voidCountForOperator Number of voids (and corrections of sums)

• totalVoidSum Total sum of the voids

• operatorName Name of the operator

• operatorPassword Operators password. Present only if the printer is in service mode.

The command leads to the reading of the available information, which will be printed out in the operator's report.
The sums are returned as floating-point numbers incorporating the currently set number of decimal places.

Parameters

operatorCode - Number of the operator (1 to 16)

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"receiptCountForOperator" - Number of fiscal receipts, issued by the operator

• KeyValue - @"registeredSalesCountForOperator" - Number of registered sales

• KeyValue - @"totalAccumulatedSum" - Total accumulated sum

• KeyValue - @"discountCountForOperator" - Number of discounts

• KeyValue - @"totalDiscounts" - Total number of discounts

• KeyValue - @"surchargeCountForOperator" - Number of surcharges

• KeyValue - @"totalSurcharges" - Total number of surcharges made

Generated by Doxygen



1.1 FMP10_ROU Class Reference 41

• KeyValue - @"voidCountForOperator" - Number of voids (and corrections of sums)

• KeyValue - @"totalVoidSum" - Total sum of the voids

• KeyValue - @"operatorName" - Name of the operator

• KeyValue - @"operatorPassword" - Operators password. Present only if the printer is in service mode.

1.1.2.30 command113Variant0Version0AndReturnError:()

- (NSDictionary ∗) command113Variant0Version0AndReturnError:

(NSError ∗∗) error

71h(113) READING THE NUMBER OF THE LAST PRINTED DOCUMENT

• Data field: None

• Response: lastDocumentNumber

lastDocumentNumber The number of the last issued document (7 digits)

Returns

NSDictionary

• KeyValue - @"lastDocumentNumber" - The number of the last issued document (7 digits)

1.1.2.31 command114Variant0Version0FiscalRecordNumber:error:()

- (NSDictionary ∗) command114Variant0Version0FiscalRecordNumber:

(NSString ∗) fiscalRecordNumber

error:(NSError ∗∗) error

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

The command returns information on different tax groups for each separate entry and or a selected period of time.
Periodic references for longer time periods may take few seconds to process.

• Data field: fiscalRecordNumber

• Response:

1. errorCode

2. lastTaxRatesRecordNumber

3. decimalsCount

4. enabledTaxArray

5. taxPercentRateA

6. taxPercentRateB

7. taxPercentRateC

Generated by Doxygen



42 Class Documentation

8. taxPercentRateD

9. dateAndTime

• fiscalRecordNumber Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• lastTaxRatesRecordNumber Last (active) decimals and VAT rates record number.

• decimalsCount Decimals count for this Z-report record.

• enabledTaxArray Enabled VAT rates mask - 4 bytes with values '0' or '1', where '1' means "enabled".

• taxPercentRateX VAT rate for the corresponding VAT group in percents.

• dateAndTime Date and time of the data in format: DD-MM-YY hh:mm:ss.

Parameters

fiscalRecordNumber - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"lastTaxRatesRecordNumber" - Last (active) decimals and VAT rates record number.

• KeyValue - @"decimalsCount" - Decimals count for this Z-report record.

• KeyValue - @"enabledTaxArray" - Enabled VAT rates mask - 4 bytes with values '0' or '1', where '1'
means "enabled".

• KeyValue - @"taxPercentRateA" - VAT rate for the corresponding VAT group in percents.

• KeyValue - @"taxPercentRateB" - VAT rate for the corresponding VAT group in percents.

• KeyValue - @"taxPercentRateC" - VAT rate for the corresponding VAT group in percents.

• KeyValue - @"taxPercentRateD" - VAT rate for the corresponding VAT group in percents.

• KeyValue - @"dateAndTime" - Date and time of the data in format: DD-MM-YY hh:mm:ss.

1.1.2.32 command114Variant1Version0FiscalRecordNumber:error:()

- (NSDictionary ∗) command114Variant1Version0FiscalRecordNumber:

(NSString ∗) fiscalRecordNumber

error:(NSError ∗∗) error

Generated by Doxygen



1.1 FMP10_ROU Class Reference 43

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

Information about total (turnover) sums for the Z-report record. Periodic references for longer time periods may take
few seconds to process.

• Data field: fiscalRecordNumber

• Response:

1. errorCode

2. outputFiscalRecordNumber

3. fiscalReceiptsCount

4. totalTurnoverInTaxGroupA

5. totalTurnoverInTaxGroupB

6. totalTurnoverInTaxGroupC

7. totalTurnoverInTaxGroupD

8. totalTurnoverInTaxGroupE

9. specialTax

• fiscalRecordNumber Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• outputFiscalRecordNumber Z-report record number.

• fiscalReceiptsCount Fiscal receipts count for the day.

• totalTurnoverInTaxGroupX Total (turnover) sum for the corresponding VAT group.

• specialTax Special tax accumulated sum.

Parameters

fiscalRecordNumber - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"outputFiscalRecordNumber" - Z-report record number.

• KeyValue - @"fiscalReceiptsCount" - Fiscal receipts count for the day.

• KeyValue - @"totalTurnoverInTaxGroupA" - Total (turnover) sum for the corresponding VAT group.

Generated by Doxygen



44 Class Documentation

• KeyValue - @"totalTurnoverInTaxGroupB" - Total (turnover) sum for the corresponding VAT group.

• KeyValue - @"totalTurnoverInTaxGroupC" - Total (turnover) sum for the corresponding VAT group.

• KeyValue - @"totalTurnoverInTaxGroupD" - Total (turnover) sum for the corresponding VAT group.

• KeyValue - @"totalTurnoverInTaxGroupE" - Total (turnover) sum for the corresponding VAT group.

• KeyValue - @"specialTax" - Special tax accumulated sum.

1.1.2.33 command114Variant1Version1FiscalRecordNumber1:fiscalRecordNumber2:error:()

- (NSDictionary ∗) command114Variant1Version1FiscalRecordNumber1:

(NSString ∗) fiscalRecordNumber1

fiscalRecordNumber2:(NSString ∗) fiscalRecordNumber2

error:(NSError ∗∗) error

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

Information about total (turnover) sums for the Z-report record(interval). Periodic references for longer time periods
may take few seconds to process.

• Data field: fiscalRecordNumber1

1. fiscalRecordNumber2

• Response:

1. errorCode

2. outputFiscalRecordNumber

3. fiscalReceiptsCount

4. totalTurnoverInTaxGroupA

5. totalTurnoverInTaxGroupB

6. totalTurnoverInTaxGroupC

7. totalTurnoverInTaxGroupD

8. totalTurnoverInTaxGroupE

9. specialTax

• fiscalRecordNumberX Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• outputFiscalRecordNumber Z-report record number.

• fiscalReceiptsCount Fiscal receipts count for the day.

• totalTurnoverInTaxGroupX Total (turnover) sum for the corresponding VAT group.

• specialTax Special tax accumulated sum.

Note: The data returned is for the period with starting record Closure1 and last record Closure2 for references.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 45

Parameters

fiscalRecordNumber1 - Number of the fiscal memory record.

fiscalRecordNumber2 - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"outputFiscalRecordNumber" - Z-report record number.

• KeyValue - @"fiscalReceiptsCount" - Fiscal receipts count for the day.

• KeyValue - @"totalTurnoverInTaxGroupA" - Total (turnover) sum for the corresponding VAT group.

• KeyValue - @"totalTurnoverInTaxGroupB" - Total (turnover) sum for the corresponding VAT group.

• KeyValue - @"totalTurnoverInTaxGroupC" - Total (turnover) sum for the corresponding VAT group.

• KeyValue - @"totalTurnoverInTaxGroupD" - Total (turnover) sum for the corresponding VAT group.

• KeyValue - @"totalTurnoverInTaxGroupE" - Total (turnover) sum for the corresponding VAT group.

• KeyValue - @"specialTax" - Special tax accumulated sum.

1.1.2.34 command114Variant2Version0FiscalRecordNumber:error:()

- (NSDictionary ∗) command114Variant2Version0FiscalRecordNumber:

(NSString ∗) fiscalRecordNumber

error:(NSError ∗∗) error

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

Information about net sums for the Z-report record. Periodic references for longer time periods may take few seconds
to process.

• Data field: fiscalRecordNumber

• Response:

1. errorCode

2. outputFiscalRecordNumber

3. fiscalReceiptsCount

4. netAmountInTaxGroupA

5. netAmountInTaxGroupB

6. netAmountInTaxGroupC

7. netAmountInTaxGroupD

8. netAmountInTaxGroupE

Generated by Doxygen



46 Class Documentation

9. specialTax

• fiscalRecordNumber Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• outputFiscalRecordNumber Z-report record number.

• fiscalReceiptsCount Fiscal receipts count for the day.

• netAmountInTaxGroupX Net sum for the corresponding VAT group.

• specialTax Special tax accumulated sum.

Parameters

fiscalRecordNumber - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"outputFiscalRecordNumber" - Z-report record number.

• KeyValue - @"fiscalReceiptsCount" - Fiscal receipts count for the day.

• KeyValue - @"netAmountInTaxGroupA" - Net sum for the corresponding VAT group.

• KeyValue - @"netAmountInTaxGroupB" - Net sum for the corresponding VAT group.

• KeyValue - @"netAmountInTaxGroupC" - Net sum for the corresponding VAT group.

• KeyValue - @"netAmountInTaxGroupD" - Net sum for the corresponding VAT group.

• KeyValue - @"netAmountInTaxGroupE" - Net sum for the corresponding VAT group.

• KeyValue - @"specialTax" - Special tax accumulated sum.

1.1.2.35 command114Variant2Version1FiscalRecordNumber1:fiscalRecordNumber2:error:()

- (NSDictionary ∗) command114Variant2Version1FiscalRecordNumber1:

(NSString ∗) fiscalRecordNumber1

fiscalRecordNumber2:(NSString ∗) fiscalRecordNumber2

error:(NSError ∗∗) error

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

Information about net sums for the Z-report record(period). Periodic references for longer time periods may take
few seconds to process.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 47

• Data field: fiscalRecordNumber1

1. fiscalRecordNumber2

• Response:

1. errorCode

2. outputFiscalRecordNumber

3. fiscalReceiptsCount

4. netAmountInTaxGroupA

5. netAmountInTaxGroupB

6. netAmountInTaxGroupC

7. netAmountInTaxGroupD

8. netAmountInTaxGroupE

9. specialTax

• fiscalRecordNumberX Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• outputFiscalRecordNumber Z-report record number.

• fiscalReceiptsCount Fiscal receipts count for the day.

• netAmountInTaxGroupX Net sum for the corresponding VAT group.

• specialTax Special tax accumulated sum.

Parameters

fiscalRecordNumber1 - Number of the fiscal memory record.

fiscalRecordNumber2 - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"outputFiscalRecordNumber" - Z-report record number.

• KeyValue - @"fiscalReceiptsCount" - Fiscal receipts count for the day.

• KeyValue - @"netAmountInTaxGroupA" - Net sum for the corresponding VAT group.

• KeyValue - @"netAmountInTaxGroupB" - Net sum for the corresponding VAT group.

• KeyValue - @"netAmountInTaxGroupC" - Net sum for the corresponding VAT group.

• KeyValue - @"netAmountInTaxGroupD" - Net sum for the corresponding VAT group.

Generated by Doxygen



48 Class Documentation

• KeyValue - @"netAmountInTaxGroupE" - Net sum for the corresponding VAT group.

• KeyValue - @"specialTax" - Special tax accumulated sum.

1.1.2.36 command114Variant3Version0FiscalRecordNumber:error:()

- (NSDictionary ∗) command114Variant3Version0FiscalRecordNumber:

(NSString ∗) fiscalRecordNumber

error:(NSError ∗∗) error

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

Information about VAT sums for the Z-report record. Periodic references for longer time periods may take few
seconds to process.

• Data field: fiscalRecordNumber

• Response:

1. errorCode

2. outputFiscalRecordNumber

3. fiscalReceiptsCount

4. vatSumInTaxGroupA

5. vatSumInTaxGroupB

6. vatSumInTaxGroupC

7. vatSumInTaxGroupD

• fiscalRecordNumber Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• outputFiscalRecordNumber Z-report record number.

• fiscalReceiptsCount Fiscal receipts count for the day.

• vatSumInTaxGroupX VAT sum for the corresponding VAT group.

• specialTax Special tax accumulated sum.

Parameters

fiscalRecordNumber - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 49

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"outputFiscalRecordNumber" - Z-report record number.

• KeyValue - @"fiscalReceiptsCount" - Fiscal receipts count for the day.

• KeyValue - @"vatSumInTaxGroupA" - VAT sum for the corresponding VAT group.

• KeyValue - @"vatSumInTaxGroupB" - VAT sum for the corresponding VAT group.

• KeyValue - @"vatSumInTaxGroupC" - VAT sum for the corresponding VAT group.

• KeyValue - @"vatSumInTaxGroupD" - VAT sum for the corresponding VAT group.

1.1.2.37 command114Variant3Version1FiscalRecordNumber1:fiscalRecordNumber2:error:()

- (NSDictionary ∗) command114Variant3Version1FiscalRecordNumber1:

(NSString ∗) fiscalRecordNumber1

fiscalRecordNumber2:(NSString ∗) fiscalRecordNumber2

error:(NSError ∗∗) error

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

Information about net sums for the Z-report record(period). Periodic references for longer time periods may take
few seconds to process.

• Data field: fiscalRecordNumber1

1. fiscalRecordNumber2

• Response:

1. errorCode

2. outputFiscalRecordNumber

3. fiscalReceiptsCount

4. vatSumInTaxGroupA

5. vatSumInTaxGroupB

6. vatSumInTaxGroupC

7. vatSumInTaxGroupD

• fiscalRecordNumberX Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• outputFiscalRecordNumber Z-report record number.

• fiscalReceiptsCount Fiscal receipts count for the day.

• vatSumInTaxGroupX VAT sum for the corresponding VAT group.

• specialTax Special tax accumulated sum.

Generated by Doxygen



50 Class Documentation

Parameters

fiscalRecordNumber1 - Number of the fiscal memory record.

fiscalRecordNumber2 - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"outputFiscalRecordNumber" - Z-report record number.

• KeyValue - @"fiscalReceiptsCount" - Fiscal receipts count for the day.

• KeyValue - @"vatSumInTaxGroupA" - VAT sum for the corresponding VAT group.

• KeyValue - @"vatSumInTaxGroupB" - VAT sum for the corresponding VAT group.

• KeyValue - @"vatSumInTaxGroupC" - VAT sum for the corresponding VAT group.

• KeyValue - @"vatSumInTaxGroupD" - VAT sum for the corresponding VAT group.

1.1.2.38 command114Variant4Version0FiscalRecordNumber:error:()

- (NSDictionary ∗) command114Variant4Version0FiscalRecordNumber:

(NSString ∗) fiscalRecordNumber

error:(NSError ∗∗) error

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

Additional information about the Z-report record. Periodic references for longer time periods may take few seconds
to process.

• Data field: fiscalRecordNumber

• Response:

1. errorCode

2. outputFiscalRecordNumber

3. lastTaxRatesRecordNumber

4. lastResetRecordNumber

5. lastElectronicJournalNumber

6. dateAndTime

• fiscalRecordNumber Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 51

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• outputFiscalRecordNumber Z-report record number.

• lastTaxRatesRecordNumber Last (active) decimals and VAT rates record number.

• lastResetRecordNumber Last RAM reset number for this Z-report record.

• lastElectronicJournalNumber Last electronic journal number for this Z-report record.

• dateAndTime Date and time of the data in format: DD-MM-YY hh:mm:ss.

Parameters

fiscalRecordNumber - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"outputFiscalRecordNumber" - Z-report record number.

• KeyValue - @"lastTaxRatesRecordNumber" - Last (active) decimals and VAT rates record number.

• KeyValue - @"lastResetRecordNumber" - Last RAM reset number for this Z-report record.

• KeyValue - @"lastElectronicJournalNumber" - Last electronic journal number for this Z-report record.

• KeyValue - @"dateAndTime" - Date and time of the data in format: DD-MM-YY hh:mm:ss.

1.1.2.39 command114Variant5Version0FiscalRecordNumber:error:()

- (NSDictionary ∗) command114Variant5Version0FiscalRecordNumber:

(NSString ∗) fiscalRecordNumber

error:(NSError ∗∗) error

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

Information about decimals and VAT rates record. Periodic references for longer time periods may take few seconds
to process.

• Data field: fiscalRecordNumber

• Response:

1. errorCode

2. decimalsCount

Generated by Doxygen



52 Class Documentation

3. enabledTaxArray

4. taxPercentRateA

5. taxPercentRateB

6. taxPercentRateC

7. taxPercentRateD

8. dateAndTime

• fiscalRecordNumber Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• decimalsCount Decimals count for this Z-report record.

• enabledTaxArray Enabled VAT rates mask - 4 bytes with values '0' or '1', where '1' means "enabled".

• taxPercentRateX VAT rate for the corresponding VAT group in percents.

• dateAndTime Date and time of the data in format: DD-MM-YY hh:mm:ss.

Parameters

fiscalRecordNumber - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"decimalsCount" - Decimals count for this Z-report record.

• KeyValue - @"enabledTaxArray" - Enabled VAT rates mask - 4 bytes with values '0' or '1', where '1'
means "enabled".

• KeyValue - @"taxPercentRateA" - VAT rate for the corresponding VAT group in percents.

• KeyValue - @"taxPercentRateB" - VAT rate for the corresponding VAT group in percents.

• KeyValue - @"taxPercentRateC" - VAT rate for the corresponding VAT group in percents.

• KeyValue - @"taxPercentRateD" - VAT rate for the corresponding VAT group in percents.

• KeyValue - @"dateAndTime" - Date and time of the data in format: DD-MM-YY hh:mm:ss.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 53

1.1.2.40 command114Variant6Version0FiscalRecordNumber:error:()

- (NSDictionary ∗) command114Variant6Version0FiscalRecordNumber:

(NSString ∗) fiscalRecordNumber

error:(NSError ∗∗) error

72h(114) INFORMATION ON THE FISCAL ENTRY OR A FISCAL PERIOD

Information about RAM reset record. Periodic references for longer time periods may take few seconds to process.

• Data field: fiscalRecordNumber

• Response:

1. errorCode

2. dateAndTime

• fiscalRecordNumber Number of the fiscal memory record.

• errorCode One byte with a value of:

1. - 'P' The data are valid.

2. - 'F' Wrong control sum in the entry. No data available.

3. - 'E' The selected entry is empty. No data available.

• dateAndTime Date and time of the data in format: DD-MM-YY hh:mm:ss.

Parameters

fiscalRecordNumber - Number of the fiscal memory record.

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte with a value of:

• - 'P' The data are valid.

• - 'F' Wrong control sum in the entry. No data available.

• - 'E' The selected entry is empty. No data available.

• KeyValue - @"dateAndTime" - Date and time of the data in format: DD-MM-YY hh:mm:ss.

1.1.2.41 command115Variant0Version0RowNumber:rowData:error:()

- (bool) command115Variant0Version0RowNumber:

(NSString ∗) rowNumber

rowData:(NSString ∗) rowData

error:(NSError ∗∗) error

73h(115) PROGRAMMING A GRAPHIC LOGO

Generated by Doxygen



54 Class Documentation

• Data field:

1. rowNumber

2. rowData

• Response:

1. None

• rowNumber Shows the line, which is being programmed - a number between 0 and 95

• rowData Graphic data.

1. Two symbols for each byte of information are entered in the hexadecimal code (Two symbols for every
byte).

2. The length of the data is up to 48 bytes, and if they are less, an automatic addition of "00" follows.

Note: This command offers the option to define a graphic logo with dimensions 48 x 12 mm (384 x 96 dots) designed
by the user themselves. The printing of this logo is activated with command 43. It is printed out immediately before
the HEADER - at the beginning of each fiscal or non-fiscal receipt. In order to define the whole logo, the command
must be executed 96 times - once for each line. After RESET of memory, default logo is active.

Parameters

rowNumber - Shows the line, which is being programmed - a number between 0 and 95

rowData - Graphic data. Two symbols for each byte of information are entered in the hexadecimal code
(Two symbols for every byte). The length of the data is up to 48 bytes, and if they are less, an
automatic addition of "00" follows.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.42 command115Variant1Version0RowNumber:error:()

- (NSDictionary ∗) command115Variant1Version0RowNumber:

(NSString ∗) rowNumber

error:(NSError ∗∗) error

73h(115) PROGRAMMING A GRAPHIC LOGO

• Data field:

1. rowNumber

• Response:

1. rowData

Generated by Doxygen



1.1 FMP10_ROU Class Reference 55

• rowNumber Shows the line, which is being programmed - a number between 0 and 95

• rowData Graphic data.

1. Two symbols for each byte of information are entered in the hexadecimal code (Two symbols for every
byte).

2. The length of the data is up to 48 bytes, and if they are less, an automatic addition of "00" follows.

Note: This command offers the option to define a graphic logo with dimensions 48 x 12 mm (384 x 96 dots) designed
by the user themselves. The printing of this logo is activated with command 43. It is printed out immediately before
the HEADER - at the beginning of each fiscal or non-fiscal receipt. In order to define the whole logo, the command
must be executed 96 times - once for each line. After RESET of memory, default logo is active.

Parameters

rowNumber - Shows the line, which is being programmed - a number between 0 and 95

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"rowData" - Graphic data. Two symbols for each byte of information are entered in the
hexadecimal code (Two symbols for every byte). The length of the data is up to 48 bytes, and if they are
less, an automatic addition of "00" follows.

1.1.2.43 command120Variant0Version0AndReturnError:()

- (NSDictionary ∗) command120Variant0Version0AndReturnError:

(NSError ∗∗) error

78h(120) SWITCHING THE PRINTER OFF

• Data field: No data

• Response: fiscalPrinterAnswer

• fiscalPrinterAnswer Contains the text 'OFF'.

The printer is switched off (eventually after finishing the printing).

Returns

NSDictionary

• KeyValue - @"fiscalPrinterAnswer" - Contains the text 'OFF'.

Generated by Doxygen



56 Class Documentation

1.1.2.44 command122Variant0Version0AndReturnError:()

- (NSDictionary ∗) command122Variant0Version0AndReturnError:

(NSError ∗∗) error

7Ah(122) JOURNAL SUPPORT

Electronic journal information.

• Data field: None

• Response: journalNumber

1. jnumberAfterLastZ

2. nextJournalNumber

3. totalJLinesAfterErase

4. freeBytesCount

5. totalBytesCount

journalNumber Journal number jnumberAfterLastZ Journal number after last Z-report nextJournalNumber Next jour-
nal number (Subcommand 'N' will get this line number). totalJLinesAfterErase Total journal lines written after last
erase. freeBytesCount Free bytes count in el. journal. totalBytesCount Total bytes count in el. journal

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"journalNumber" - Journal number

• KeyValue - @"jnumberAfterLastZ" - Journal number after last Z-report

• KeyValue - @"nextJournalNumber" - Next journal number (Subcommand 'N' will get this line number).

• KeyValue - @"totalJLinesAfterErase" - Total journal lines written after last erase.

• KeyValue - @"freeBytesCount" - Free bytes count in el. journal.

• KeyValue - @"totalBytesCount" - Total bytes count in el. journal

1.1.2.45 command122Variant1Version0AndReturnError:()

- (NSDictionary ∗) command122Variant1Version0AndReturnError:

(NSError ∗∗) error

7Ah(122) JOURNAL SUPPORT

Get first journal line.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 57

• Data field: None

• Response: errorCode

1. journalLineText

• errorCode

1. 'F' No journal line found

2. 'P' Journal line successfully read

• journalLineText The journal line.

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"errorCode" - One byte, showing the result from the operation and having the following
meaning:

• 'F' No journal line found

• 'P' Journal line successfully read

• KeyValue - @"journalLineText" - The journal line.

1.1.2.46 command122Variant1Version1AndReturnError:()

- (NSDictionary ∗) command122Variant1Version1AndReturnError:

(NSError ∗∗) error

7Ah(122) JOURNAL SUPPORT

Get next journal line.

• Data field: None

• Response: errorCode

1. journalLineText

• errorCode

1. 'F' No journal line found

2. 'P' Journal line successfully read

• journalLineText The journal line.

Generated by Doxygen



58 Class Documentation

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"" - One byte, showing the result from the operation and having the following meaning:

• 'F' No journal line found

• 'P' Journal line successfully read

• KeyValue - @"" - The journal line.

1.1.2.47 command122Variant2Version0AndReturnError:()

- (bool) command122Variant2Version0AndReturnError:

(NSError ∗∗) error

7Ah(122) JOURNAL SUPPORT

Print electronic journal using half-height font starting from the first journal line.

• Data field: None

• Response: None

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.48 command122Variant2Version1AndReturnError:()

- (bool) command122Variant2Version1AndReturnError:

(NSError ∗∗) error

7Ah(122) JOURNAL SUPPORT

Print electronic journal using normal font starting from the first journal line.

• Data field: None

• Response: None

Generated by Doxygen



1.1 FMP10_ROU Class Reference 59

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.49 command122Variant3Version0AndReturnError:()

- (bool) command122Variant3Version0AndReturnError:

(NSError ∗∗) error

7Ah(122) JOURNAL SUPPORT

Continue printing of the electronic journal using half-height font - starting with the first non-printed line.

• Data field: None

• Response: None

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.50 command122Variant3Version1AndReturnError:()

- (bool) command122Variant3Version1AndReturnError:

(NSError ∗∗) error

7Ah(122) JOURNAL SUPPORT

Continue printing of the electronic journal using normal font - starting with the first non-printed line.

• Data field: None

• Response: None

Generated by Doxygen



60 Class Documentation

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.51 command122Variant4Version0AndReturnError:()

- (bool) command122Variant4Version0AndReturnError:

(NSError ∗∗) error

7Ah(122) JOURNAL SUPPORT

Erase electronic journal. Before this the journal must be printed!

• Data field: None

• Response: None

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.52 command38Variant0Version0AndReturnError:()

- (NSDictionary ∗) command38Variant0Version0AndReturnError:

(NSError ∗∗) error

26h (38) Opening a non-fiscal receipt.

• Data field:

1. None

• Response:

1. Allreceipt The number of all issued receipts (fiscal and non-fiscal) from the last daily closure on (4 bytes).

Generated by Doxygen



1.1 FMP10_ROU Class Reference 61

The FP performs the following actions:

• Prints the header

• Prints the tax registration number of the seller

• A response is received, which contains Allreceipt

The command cannot be executed, S1.1 is raised if.

• The fiscal memory has not been formatted

• There is an opened fiscal or non-fiscal receipt

• There is no paper

• The clock is not set

• The electronic journal is full

Returns

NSDictionary

• KeyValue - @"allReceipt" - The number of all issued receipts (fiscal and non-fiscal) from the last daily
closure on (4 bytes).

1.1.2.53 command39Variant0Version0AndReturnError:()

- (NSDictionary ∗) command39Variant0Version0AndReturnError:

(NSError ∗∗) error

27h (39) Closing a non-fiscal receipt

• Data field:

1. None

• Response:

1. Allreceipt The number of all issued receipts (fiscal and non-fiscal) from the last daily closure on (4 bytes).

The FP performs the following actions:

• Prints the footer

• The sequence number, date and hour of document are printed

• "NON-FISCAL RECEIPT" is printed in expanded style.

If the S1.1 flag is raised, the command is not executed because there is no opened non-fiscal receipt.

Returns

NSDictionary

• KeyValue - @"allReceipt" - The number of all issued receipts (fiscal and non-fiscal) from the last daily
closure on (4 bytes).

Generated by Doxygen



62 Class Documentation

1.1.2.54 command41Variant0Version0Switches:error:()

- (bool) command41Variant0Version0Switches:

(NSString ∗) switches

error:(NSError ∗∗) error

29h (41) SET MEMORY SWITCHES

• Data field:

1. Switches 8 bytes with value '0' or '1' - the configuration switches.

• Response:

1. None

Note:

The command writes to flash memory the switches value, graphics logo, bar code height, print darkness and default
drawer pulse length. After RAM reset they are restored with the saved values. If the switches parameter is not
present, then the old switches are kept.

Parameters

switches - 8 bytes with value '0' or '1' - the configuration switches.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.55 command41Variant0Version1AndReturnError:()

- (bool) command41Variant0Version1AndReturnError:

(NSError ∗∗) error

29h (41) SET MEMORY SWITCHES

• Data field:

1. None

• Response:

1. None

The command writes to flash memory the switches value, graphics logo, bar code height, print darkness and default
drawer pulse length. After RAM reset they are restored with the saved values. If the switches parameter is not
present, then the old switches are kept.

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



1.1 FMP10_ROU Class Reference 63

1.1.2.56 command42Variant0Version0InputText:error:()

- (bool) command42Variant0Version0InputText:

(NSString ∗) inputText

error:(NSError ∗∗) error

2Ah (42) PRINTING OF A FREE NON-FISCAL TEXT

• Data field:

1. inputText A text of 30 symbols (at most). The symbols after 30 are cut off.

• Response:

1. None

If S1.1 is raised, there is no non-fiscal receipt opened and the text is not printed.

Parameters

inputText - A text of 30 symbols (at most). The symbols after 30 are cut off.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.57 command43Variant0Version0ItemIndex:dataValue:error:()

- (bool) command43Variant0Version0ItemIndex:

(NSString ∗) itemIndex

dataValue:(NSString ∗) dataValue

error:(NSError ∗∗) error

2Bh (43) SETTING FOOTER AND PRINTING OPTIONS

• Data field:

1. itemIndex

2. dataValue

• Response:

1. Entries from the data field

FOOTER consists of 2 lines of text printed at the end of each receipt. HEADER and FOOTER are automatically
center aligned.

• itemIndex One symbol having the following meaning:

Generated by Doxygen



64 Class Documentation

1. "6" to "7" "6" and "7" select the first or second FOOTER line.

2. "B" Set bar code height in pixels (0.125 mm). Possible values from 24 (3 mm) to 240 (30 mm). The
barcode is printed with command 84 (54H).

3. "D" Set print darkness. Possible values:

(a) '1': Very low

(b) '2': Low

(c) '3': Normal

(d) '4': Dark

(e) '5': Very dark

4. "E" Disable / enable printing of total receipt sum in EUR when first Total (53) command is executed.
Optionally the command sets the valid exchange rate EUR / LEI. Syntax of the data:

(a) <Enable>[,Rate]

(b) Enable Disable / enable flag. One byte: '0' or '1'.

(c) Rate Exchange rate. A float number with up to 5 decimal places and 8 significant digits. If not
preset, then old value remains active. If 0.00000, then EUR value is not printed independent of the
value of Enable flag.

5. "L" Height of graphic logo and permission/rejection of the printing of graphic logo immediately before
the header. This logo is defined with command 115 (73H).

6. "Z" Set auto off time in seconds. Possible values from 60 to 3600. Setting 0 disables the auto off.

7. "I" Gives us the option to read values, set earlier with command 43. After the letter "I" only one more
symbol follows which coincides with some of the above.

• dataValue A text string:

1. If <item> is '0' to '7' - the text of the header / footer line (up to 38 symbols).

2. If <item> = 'B' - A number - the height of bar code in pixels.

3. If <item> = 'D' - The print darkness (1 to 5).

4. If <item> = 'E' - Returns Enable,Rate, where Enable is Disable / enable flag and Rate is current ex-
change rata EUR / LEI.

5. If <item> = ‘L' Syntax <Height>,<Enabled>

(a) Height Graphics logo height in lines (0.125 mm). A number from 8 to 96.

(b) Enabled '0' or '1', where '1' means, that logo printing is enabled.

6. If <item> = ‘Z' Syntax <OffTime>

Generated by Doxygen



1.1 FMP10_ROU Class Reference 65

Parameters

itemIndex - One symbol having the following meaning:

1. "6" to "7" "6" and "7" select the first or second FOOTER line.

2. "B" Set bar code height in pixels (0.125 mm). Possible values from 24 (3 mm) to 240 (30
mm). The barcode is printed with command 84 (54H).

3. "D" Set print darkness. Possible values:

(a) '1': Very low

(b) '2': Low

(c) '3': Normal

(d) '4': Dark

(e) '5': Very dark

4. "E" Disable / enable printing of total receipt sum in EUR when first Total (53) command is
executed. Optionally the command sets the valid exchange rate EUR / LEI. Syntax of the
data:

(a) <Enable>[,Rate]

(b) Enable Disable / enable flag. One byte: '0' or '1'.

(c) Rate Exchange rate. A float number with up to 5 decimal places and 8 significant
digits. If not preset, then old value remains active. If 0.00000, then EUR value is not
printed independent of the value of Enable flag.

5. "L" Height of graphic logo and permission/rejection of the printing of graphic logo
immediately before the header. This logo is defined with command 115 (73H).

6. "Z" Set auto off time in seconds. Possible values from 60 to 3600. Setting 0 disables the
auto off.

7. "I" Gives us the option to read values, set earlier with command 43. After the letter "I" only
one more symbol follows which coincides with some of the above.

dataValue - A text string:

1. If <item> is '0' to '7' - the text of the header / footer line (up to 38 symbols).

2. If <item> = 'B' - A number - the height of bar code in pixels.

3. If <item> = 'D' - The print darkness (1 to 5).

4. If <item> = 'E' - Returns Enable,Rate, where Enable is Disable / enable flag and Rate is
current exchange rata EUR / LEI.

5. If <item> = ‘L' Syntax <Height>,<Enabled>

(a) Height Graphics logo height in lines (0.125 mm). A number from 8 to 96.

(b) Enabled '0' or '1', where '1' means, that logo printing is enabled.

6. If <item> = ‘Z' Syntax <OffTime>

error pointer to NSError object, where error information is stored in case function fails. You can pass nil
if you don't want that information

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



66 Class Documentation

1.1.2.58 command44Variant0Version0TargetLines:error:()

- (bool) command44Variant0Version0TargetLines:

(NSString ∗) targetLines

error:(NSError ∗∗) error

2Ch(44) ADVANCING PAPER

• Data field: targetLines

• Response: None

• targetLines Advancing paper measured in text lines. The programmed line count cannot be greater than 99
(1 or 2 bytes).

• If the parameter is not there, the default setting is 1 line.

Parameters

targetLines - Advancing paper measured in text lines. The programmed line count cannot be greater than 99
(1 or 2 bytes). If the parameter is not there, the default setting is 1 line.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil
if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.59 command45Variant0Version0AndReturnError:()

- (NSDictionary ∗) command45Variant0Version0AndReturnError:

(NSError ∗∗) error

2Dh (45) OPENING A RECEIPT FOR 90 DEGREES ROTATED TEXT

• Data field: None

• Response: allRotationReceipt

• allRotationReceipt Rotated receipt number after last Z-report. 4 bytes.

The command opens a non-fiscal receipt for 90 degrees rotated text.

The command will be not executed if:

• A receipt is open (fiscal or non-fiscal).

• Out of paper.

• The clock has to be set.

Returns

NSDictionary

• KeyValue - @"allRotationReceipt" - Rotated receipt number after last Z-report. 4 bytes.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 67

1.1.2.60 command46Variant0Version0RotatedTextRow:error:()

- (bool) command46Variant0Version0RotatedTextRow:

(NSString ∗) rotatedTextRow

error:(NSError ∗∗) error

2Eh(46) PRINT 90 DEGREES ROTATED TEXT

• Data field: Text

• Response: None

• Text The line to be print. Length is up to 100 symbols. It is possible to print bold and underline:

1. <Tab>B Start bold printing.

2. <Tab>b Cancel bold printing.

3. <Tab>U Start underlined printing.

4. <Tab>u Cancel underlined printing.

The command sends text for 90 degrees rotated lines. On the paper can be placed up to 12 rotated lines. Sent lines
are accumulated in printer's memory. If the command is executed more than 12 times, then the text is printed and
the printer expects new lines or command 47 (close the receipt). The printer detects the longest text line and fill all
other lines to the same length with spaces (ASCII 20h). If more than 12 lines are sent, then more than one column
of lines is printed. There is no space between the columns, so rotated lines of unlimited length can be printed.

The command is not permitted, if no rotated receipt is open.

Parameters

rotatedTextRow - The line to be print. Length is up to 100 symbols. It is possible to print bold and underline:

1. <Tab>B Start bold printing.

2. <Tab>b Cancel bold printing.

3. <Tab>U Start underlined printing.

4. <Tab>u Cancel underlined printing.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.61 command47Variant0Version0AndReturnError:()

- (NSDictionary ∗) command47Variant0Version0AndReturnError:

(NSError ∗∗) error

2Fh(47) CLOSING A RECEIPT FOR 90 DEGREES ROTATED TEXT

Generated by Doxygen



68 Class Documentation

• Data field:

1. None

• Response:

1. allRotationReceipt Rotated receipt number after last Z-report. 4 bytes.

The command closes the receipt. If there are unprinted lines, they are automatically printed before this.

The command will be not executed, if no rotated receipt is open.

Returns

NSDictionary

• KeyValue - @"allRotationReceipt" - Rotated receipt number after last Z-report. 4 bytes.

1.1.2.62 command48Variant0Version0OperatorCode:operatorPassword:tillNumber:error:()

- (NSDictionary ∗) command48Variant0Version0OperatorCode:

(NSString ∗) operatorCode

operatorPassword:(NSString ∗) operatorPassword

tillNumber:(NSString ∗) tillNumber

error:(NSError ∗∗) error

30h(48) OPENING A FISCAL CLIENT'S RECEIPT

• Data field:

1. operatorCode

2. operatorPassword

3. tillNumber

• Response:

1. allReceiptNumber

2. fiscalReceiptNumber

• operatorCode Operator's number (1 to 16)

• operatorPassword Operator's password (4 to 8 digits)

• tillNumber Number of point of sale (a whole number of maximum 5 digits)

• allReceiptNumber The number of all issued receipts (fiscal or non-) from the last daily closure up to the
moment (4 bytes).

• fiscalReceiptNumber The number of all fiscal receipts from the last daily closure up to the moment (4 bytes).

The FP performs the following actions:

• Prints the HEADER

Generated by Doxygen



1.1 FMP10_ROU Class Reference 69

• Prints the tax registration number

• Prints the number and name of operator as well as the cashier desk number

• Allreceipt and FiscReceipt are returned

The command will not be successful if:

• There is an opened fiscal or non-fiscal receipt

• The maximum number of receipts, as fixed for the day, has already been issued

• The fiscal memory is full

• The fiscal memory is damaged

• No code or operator password, or cashier desk number available

• Less than 2 HEADER lines are programmed

• No VAT registration number available

• Wrong operator password

• The clock needs setting

• Journal is full

After entering three wrong operator's passwords, the printer blocks and must be switched off and on again to restart
operation.

Parameters

operatorCode - Operator's number (1 to 16)

operatorPassword - Operator's password (4 to 8 digits)

tillNumber - Number of point of sale (a whole number of maximum 5 digits)

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"allReceiptNumber" - The number of all issued receipts (fiscal or non-) from the last daily
closure up to the moment (4 bytes).

• KeyValue - @"fiscalReceiptNumber" - The number of all fiscal receipts from the last daily closure up to
the moment (4 bytes).

1.1.2.63 command49Variant0Version0TaxGroup:itemPrice:error:()

- (bool) command49Variant0Version0TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

Generated by Doxygen



70 Class Documentation

• Data field:

1. taxGroup

2. itemPrice

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.64 command49Variant0Version10TextRow1:taxGroup:itemPrice:itemQuantity:error:()

- (bool) command49Variant0Version10TextRow1:

(NSString ∗) textRow1

Generated by Doxygen



1.1 FMP10_ROU Class Reference 71

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. itemQuantity

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - A non-mandatory parameter setting the quantity of items for sale. By default, this is 1.000.The
length of this parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Generated by Doxygen



72 Class Documentation

Returns

TRUE upon success, FALSE otherwise

1.1.2.65 command49Variant0Version11TextRow1:taxGroup:itemPrice:itemQuantity:specialTax:error:()

- (bool) command49Variant0Version11TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. itemQuantity

5. specialTax

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 73

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



74 Class Documentation

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - A non-mandatory parameter setting the quantity of items for sale. By default, this is 1.000.The
length of this parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from the single
price before applying any VAT calculations and is printed on a separate line in the receipt. The
accumulated value is stored in the fiscal memory and is printed in the Z-report an periodical
reports, if not 0.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.66 command49Variant0Version12TextRow1:textRow2:taxGroup:itemPrice:error:()

- (bool) command49Variant0Version12TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 75

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.67 command49Variant0Version13TextRow1:textRow2:taxGroup:itemPrice:specialTax:error:()

- (bool) command49Variant0Version13TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

Generated by Doxygen



76 Class Documentation

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. specialTax

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

5. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The
accumulated value is stored in the fiscal memory and is printed in the Z-report an periodical
reports, if not 0.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil
if you don't want that information Generated by Doxygen



1.1 FMP10_ROU Class Reference 77

Returns

TRUE upon success, FALSE otherwise

1.1.2.68 command49Variant0Version14TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:error:()

- (bool) command49Variant0Version14TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. itemQuantity

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

5. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



78 Class Documentation

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - A non-mandatory parameter setting the quantity of items for sale. By default, this is 1.000.The
length of this parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.69 command49Variant0Version15TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:specialTax:error:()

- (bool) command49Variant0Version15TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. itemQuantity

6. specialTax

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 79

5. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

6. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - A non-mandatory parameter setting the quantity of items for sale. By default, this is 1.000.The
length of this parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from the single
price before applying any VAT calculations and is printed on a separate line in the receipt. The
accumulated value is stored in the fiscal memory and is printed in the Z-report an periodical
reports, if not 0.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



80 Class Documentation

1.1.2.70 command49Variant0Version1TaxGroup:itemPrice:specialTax:error:()

- (bool) command49Variant0Version1TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. taxGroup

2. itemPrice

3. specialTax

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The
accumulated value is stored in the fiscal memory and is printed in the Z-report an periodical
reports, if not 0.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil
if you don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 81

Returns

TRUE upon success, FALSE otherwise

1.1.2.71 command49Variant0Version2TaxGroup:itemPrice:itemQuantity:error:()

- (bool) command49Variant0Version2TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. taxGroup

2. itemPrice

3. itemQuantity

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



82 Class Documentation

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - A non-mandatory parameter setting the quantity of items for sale. By default, this is 1.000.The
length of this parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.72 command49Variant0Version3TaxGroup:itemPrice:itemQuantity:specialTax:error:()

- (bool) command49Variant0Version3TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. taxGroup

2. itemPrice

3. itemQuantity

4. specialTax

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

4. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

FP performs the following actions:

Generated by Doxygen



1.1 FMP10_ROU Class Reference 83

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - A non-mandatory parameter setting the quantity of items for sale. By default, this is 1.000.The
length of this parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from the single
price before applying any VAT calculations and is printed on a separate line in the receipt. The
accumulated value is stored in the fiscal memory and is printed in the Z-report an periodical
reports, if not 0.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.73 command49Variant0Version4TextRow2:taxGroup:itemPrice:error:()

- (bool) command49Variant0Version4TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

Generated by Doxygen



84 Class Documentation

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



1.1 FMP10_ROU Class Reference 85

1.1.2.74 command49Variant0Version5TextRow2:taxGroup:itemPrice:specialTax:error:()

- (bool) command49Variant0Version5TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

4. specialTax

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



86 Class Documentation

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The
accumulated value is stored in the fiscal memory and is printed in the Z-report an periodical
reports, if not 0.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil
if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.75 command49Variant0Version6TextRow2:taxGroup:itemPrice:itemQuantity:error:()

- (bool) command49Variant0Version6TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

4. itemQuantity

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

FP performs the following actions:

Generated by Doxygen



1.1 FMP10_ROU Class Reference 87

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - A non-mandatory parameter setting the quantity of items for sale. By default, this is 1.000.The
length of this parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.76 command49Variant0Version7TextRow2:taxGroup:itemPrice:itemQuantity:specialTax:error:()

- (bool) command49Variant0Version7TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

Generated by Doxygen



88 Class Documentation

1. textRow2

2. taxGroup

3. itemPrice

4. itemQuantity

5. specialTax

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - A non-mandatory parameter setting the quantity of items for sale. By default, this is 1.000.The
length of this parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from the single
price before applying any VAT calculations and is printed on a separate line in the receipt. The
accumulated value is stored in the fiscal memory and is printed in the Z-report an periodical
reports, if not 0.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 89

Returns

TRUE upon success, FALSE otherwise

1.1.2.77 command49Variant0Version8TextRow1:taxGroup:itemPrice:error:()

- (bool) command49Variant0Version8TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



90 Class Documentation

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.78 command49Variant0Version9TextRow1:taxGroup:itemPrice:specialTax:error:()

- (bool) command49Variant0Version9TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. specialTax

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 91

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction, depending on
the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The
accumulated value is stored in the fiscal memory and is printed in the Z-report an periodical
reports, if not 0.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil
if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.79 command49Variant1Version0TaxGroup:itemPrice:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version0TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. taxGroup

2. itemPrice

3. sellWithAbsoluteSumDiscount

• Response: None

Generated by Doxygen



92 Class Documentation

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.80 command49Variant1Version10TextRow1:taxGroup:itemPrice:itemQuantity:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version10TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

Generated by Doxygen



1.1 FMP10_ROU Class Reference 93

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. itemQuantity

5. sellWithAbsoluteSumDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



94 Class Documentation

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this
parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be
longer than 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted
from the single price before applying any VAT calculations and is printed on a
separate line in the receipt. The accumulated value is stored in the fiscal
memory and is printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.81 command49Variant1Version11TextRow1:taxGroup:itemPrice:itemQuantity:specialTax:sellWithAbsoluteSumDiscount←↩

:error:()

- (bool) command49Variant1Version11TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. itemQuantity

5. specialTax

6. sellWithAbsoluteSumDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 95

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

6. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this
parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be
longer than 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted
from the single price before applying any VAT calculations and is printed on a
separate line in the receipt. The accumulated value is stored in the fiscal
memory and is printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Generated by Doxygen



96 Class Documentation

Returns

TRUE upon success, FALSE otherwise

1.1.2.82 command49Variant1Version12TextRow1:textRow2:taxGroup:itemPrice:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version12TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. sellWithAbsoluteSumDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

5. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



1.1 FMP10_ROU Class Reference 97

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.83 command49Variant1Version13TextRow1:textRow2:taxGroup:itemPrice:specialTax:sellWithAbsoluteSumDiscount←↩

:error:()

- (bool) command49Variant1Version13TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. specialTax

6. sellWithAbsoluteSumDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

Generated by Doxygen



98 Class Documentation

5. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

6. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted
from the single price before applying any VAT calculations and is printed on a
separate line in the receipt. The accumulated value is stored in the fiscal
memory and is printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



1.1 FMP10_ROU Class Reference 99

1.1.2.84 command49Variant1Version14TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:sellWithAbsoluteSumDiscount←↩

:error:()

- (bool) command49Variant1Version14TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. itemQuantity

6. sellWithAbsoluteSumDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

5. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

6. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



100 Class Documentation

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this
parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be
longer than 8 meaningful digits.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.85 command49Variant1Version15TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:specialTax:sellWithAbsolute←↩

SumDiscount:error:()

- (bool) command49Variant1Version15TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. itemQuantity

6. specialTax

7. sellWithAbsoluteSumDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 101

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

5. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

6. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

7. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this
parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be
longer than 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted
from the single price before applying any VAT calculations and is printed on a
separate line in the receipt. The accumulated value is stored in the fiscal
memory and is printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Generated by Doxygen



102 Class Documentation

Returns

TRUE upon success, FALSE otherwise

1.1.2.86 command49Variant1Version1TaxGroup:itemPrice:specialTax:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version1TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. taxGroup

2. itemPrice

3. specialTax

4. sellWithAbsoluteSumDiscount

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

4. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



1.1 FMP10_ROU Class Reference 103

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted
from the single price before applying any VAT calculations and is printed on a
separate line in the receipt. The accumulated value is stored in the fiscal
memory and is printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.87 command49Variant1Version2TaxGroup:itemPrice:itemQuantity:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version2TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. taxGroup

2. itemPrice

3. itemQuantity

4. sellWithAbsoluteSumDiscount

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

4. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

Generated by Doxygen



104 Class Documentation

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this
parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be
longer than 8 meaningful digits.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.88 command49Variant1Version3TaxGroup:itemPrice:itemQuantity:specialTax:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version3TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

Generated by Doxygen



1.1 FMP10_ROU Class Reference 105

• Data field:

1. taxGroup

2. itemPrice

3. itemQuantity

4. specialTax

5. sellWithAbsoluteSumDiscount

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

4. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

5. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

Generated by Doxygen



106 Class Documentation

Parameters

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this
parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be
longer than 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted
from the single price before applying any VAT calculations and is printed on a
separate line in the receipt. The accumulated value is stored in the fiscal
memory and is printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.89 command49Variant1Version4TextRow2:taxGroup:itemPrice:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version4TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

4. sellWithAbsoluteSumDiscount

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

Generated by Doxygen



1.1 FMP10_ROU Class Reference 107

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.90 command49Variant1Version5TextRow2:taxGroup:itemPrice:specialTax:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version5TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

Generated by Doxygen



108 Class Documentation

1. textRow2

2. taxGroup

3. itemPrice

4. specialTax

5. sellWithAbsoluteSumDiscount

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

5. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted
from the single price before applying any VAT calculations and is printed on a
separate line in the receipt. The accumulated value is stored in the fiscal
memory and is printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 109

Returns

TRUE upon success, FALSE otherwise

1.1.2.91 command49Variant1Version6TextRow2:taxGroup:itemPrice:itemQuantity:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version6TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

4. itemQuantity

5. sellWithAbsoluteSumDiscount

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



110 Class Documentation

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this
parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be
longer than 8 meaningful digits.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.92 command49Variant1Version7TextRow2:taxGroup:itemPrice:itemQuantity:specialTax:sellWithAbsoluteSumDiscount←↩

:error:()

- (bool) command49Variant1Version7TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

4. itemQuantity

5. specialTax

6. sellWithAbsoluteSumDiscount

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 111

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

6. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this
parameter is 9 meaningful digits (not more than 3 after the decimal point). The
result Price∗Quan is rounded up to the set number of digits and cannot be
longer than 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted
from the single price before applying any VAT calculations and is printed on a
separate line in the receipt. The accumulated value is stored in the fiscal
memory and is printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Generated by Doxygen



112 Class Documentation

Returns

TRUE upon success, FALSE otherwise

1.1.2.93 command49Variant1Version8TextRow1:taxGroup:itemPrice:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version8TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. sellWithAbsoluteSumDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



1.1 FMP10_ROU Class Reference 113

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.94 command49Variant1Version9TextRow1:taxGroup:itemPrice:specialTax:sellWithAbsoluteSumDiscount:error:()

- (bool) command49Variant1Version9TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. specialTax

5. sellWithAbsoluteSumDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

5. sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the currently
performed sale. Up to 8 significant digits.

Generated by Doxygen



114 Class Documentation

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a
restriction, depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted
from the single price before applying any VAT calculations and is printed on a
separate line in the receipt. The accumulated value is stored in the fiscal
memory and is printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the
currently performed sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.95 command49Variant2Version0TaxGroup:itemPrice:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version0TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

Generated by Doxygen



1.1 FMP10_ROU Class Reference 115

• Data field:

1. taxGroup

2. itemPrice

3. sellWithPercentDiscount

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



116 Class Documentation

1.1.2.96 command49Variant2Version10TextRow1:taxGroup:itemPrice:itemQuantity:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version10TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. itemQuantity

5. sellWithPercentDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



1.1 FMP10_ROU Class Reference 117

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this parameter
is 9 meaningful digits (not more than 3 after the decimal point). The result
Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.97 command49Variant2Version11TextRow1:taxGroup:itemPrice:itemQuantity:specialTax:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version11TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. itemQuantity

5. specialTax

6. sellWithPercentDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

Generated by Doxygen



118 Class Documentation

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

6. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this parameter
is 9 meaningful digits (not more than 3 after the decimal point). The result
Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from
the single price before applying any VAT calculations and is printed on a separate
line in the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 119

Returns

TRUE upon success, FALSE otherwise

1.1.2.98 command49Variant2Version12TextRow1:textRow2:taxGroup:itemPrice:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version12TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. sellWithPercentDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

5. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



120 Class Documentation

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.99 command49Variant2Version13TextRow1:textRow2:taxGroup:itemPrice:specialTax:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version13TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. specialTax

6. sellWithPercentDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 121

5. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

6. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from
the single price before applying any VAT calculations and is printed on a separate
line in the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



122 Class Documentation

1.1.2.100 command49Variant2Version14TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version14TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. itemQuantity

6. sellWithPercentDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

5. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

6. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



1.1 FMP10_ROU Class Reference 123

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this parameter
is 9 meaningful digits (not more than 3 after the decimal point). The result
Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.101 command49Variant2Version15TextRow1:textRow2:taxGroup:itemPrice:itemQuantity:specialTax:sellWithPercent←↩

Discount:error:()

- (bool) command49Variant2Version15TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. textRow2

3. taxGroup

4. itemPrice

5. itemQuantity

6. specialTax

7. sellWithPercentDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

Generated by Doxygen



124 Class Documentation

2. textRow2 A text of up to 30 bytes containing a second line describing the sale.

3. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

4. itemPrice This is a single price that consists of 8 meaningful digits.

5. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

6. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

7. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this parameter
is 9 meaningful digits (not more than 3 after the decimal point). The result
Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from
the single price before applying any VAT calculations and is printed on a separate
line in the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 125

Returns

TRUE upon success, FALSE otherwise

1.1.2.102 command49Variant2Version1TaxGroup:itemPrice:specialTax:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version1TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. taxGroup

2. itemPrice

3. specialTax

4. sellWithPercentDiscount

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

4. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



126 Class Documentation

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from
the single price before applying any VAT calculations and is printed on a separate
line in the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.103 command49Variant2Version2TaxGroup:itemPrice:itemQuantity:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version2TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. taxGroup

2. itemPrice

3. itemQuantity

4. sellWithPercentDiscount

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

4. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 127

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this parameter
is 9 meaningful digits (not more than 3 after the decimal point). The result
Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.104 command49Variant2Version3TaxGroup:itemPrice:itemQuantity:specialTax:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version3TaxGroup:

(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

Generated by Doxygen



128 Class Documentation

• Data field:

1. taxGroup

2. itemPrice

3. itemQuantity

4. specialTax

5. sellWithPercentDiscount

• Response: None

1. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

2. itemPrice This is a single price that consists of 8 meaningful digits.

3. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

4. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

5. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 129

Parameters

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this parameter
is 9 meaningful digits (not more than 3 after the decimal point). The result
Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from
the single price before applying any VAT calculations and is printed on a separate
line in the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.105 command49Variant2Version4TextRow2:taxGroup:itemPrice:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version4TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

4. sellWithPercentDiscount

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits. =

4. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

Generated by Doxygen



130 Class Documentation

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.106 command49Variant2Version5TextRow2:taxGroup:itemPrice:specialTax:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version5TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

Generated by Doxygen



1.1 FMP10_ROU Class Reference 131

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

4. specialTax

5. sellWithPercentDiscount

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

5. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from
the single price before applying any VAT calculations and is printed on a separate
line in the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Generated by Doxygen



132 Class Documentation

Returns

TRUE upon success, FALSE otherwise

1.1.2.107 command49Variant2Version6TextRow2:taxGroup:itemPrice:itemQuantity:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version6TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

4. itemQuantity

5. sellWithPercentDiscount

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 133

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



134 Class Documentation

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this parameter
is 9 meaningful digits (not more than 3 after the decimal point). The result
Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.108 command49Variant2Version7TextRow2:taxGroup:itemPrice:itemQuantity:specialTax:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version7TextRow2:

(NSString ∗) textRow2

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow2

2. taxGroup

3. itemPrice

4. itemQuantity

5. specialTax

6. sellWithPercentDiscount

• Response: None

1. textRow2 A text of up to 30 bytes containing a second line describing the sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 135

4. itemQuantity The quantity of items for sale. By default, this is 1.000.The length of this parameter is 9 mean-
ingful digits (not more than 3 after the decimal point). The result Price∗Quan is rounded up to the set number
of digits and cannot be longer than 8 meaningful digits.

5. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

6. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow2 - A text of up to 30 bytes containing a second line describing the sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

itemQuantity - The quantity of items for sale. By default, this is 1.000.The length of this parameter
is 9 meaningful digits (not more than 3 after the decimal point). The result
Price∗Quan is rounded up to the set number of digits and cannot be longer than 8
meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from
the single price before applying any VAT calculations and is printed on a separate
line in the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Generated by Doxygen



136 Class Documentation

Returns

TRUE upon success, FALSE otherwise

1.1.2.109 command49Variant2Version8TextRow1:taxGroup:itemPrice:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version8TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. sellWithPercentDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Generated by Doxygen



1.1 FMP10_ROU Class Reference 137

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.110 command49Variant2Version9TextRow1:taxGroup:itemPrice:specialTax:sellWithPercentDiscount:error:()

- (bool) command49Variant2Version9TextRow1:

(NSString ∗) textRow1

taxGroup:(NSString ∗) taxGroup

itemPrice:(NSString ∗) itemPrice

specialTax:(NSString ∗) specialTax

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

31h(49) REGISTRATION OF SALES

• Data field:

1. textRow1

2. taxGroup

3. itemPrice

4. specialTax

5. sellWithPercentDiscount

• Response: None

1. textRow1 A text of up to 30 bytes containing one line of description of sale.

2. taxGroup One byte containing letter, which indicates the type of tax. There is a restriction, depending on the
enabled tax groups (command 83).

3. itemPrice This is a single price that consists of 8 meaningful digits.

4. specialTax Special tax. Has the dimensions of a single price. This value is subtracted from the single price
before applying any VAT calculations and is printed on a separate line in the receipt. The accumulated value
is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

5. sellWithPercentDiscount The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%, where up to 2 decimal places
are acceptable.

Generated by Doxygen



138 Class Documentation

FP performs the following actions:

• - The text, describing sale is printed out together with the price and code of discount or surcharge. If there is
a set quantity, the information on it is printed out too.

• - The price of the items sold is accumulated to the sums already stored in the operational memory. In case of
memory overflow the value of respective bites of the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is then added to a specially
maintained registers within the printer. The values for the day are printed out together with the daily financial
report.

The command will not be correctly executed if and when: No fiscal receipt has been opened

• - The maximum number of sales for one receipt have already been performed (380)

• - The 35h command has been successfully executed

• - The sum for some of the tax groups has become negative

• - The sum of discounts and surcharges within the same receipt has become negative

• - Journal is full

Parameters

textRow1 - A text of up to 30 bytes containing one line of description of sale.

taxGroup - One byte containing letter, which indicates the type of tax. There is a restriction,
depending on the enabled tax groups (command 83).

itemPrice - This is a single price that consists of 8 meaningful digits.

specialTax - Special tax. Has the dimensions of a single price. This value is subtracted from
the single price before applying any VAT calculations and is printed on a separate
line in the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithPercentDiscount - The value of discount or surcharge (depending on the sign) in percent over the
currently performed sale. Possible values are between - 99.00% and 99.00%,
where up to 2 decimal places are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.111 command50Variant0Version0StartDate:endDate:error:()

- (NSDictionary ∗) command50Variant0Version0StartDate:

(NSString ∗) startDate

endDate:(NSString ∗) endDate

error:(NSError ∗∗) error

32h(50) TAX RATES ENTERED DURING THE ACCOUNTED PERIOD

Generated by Doxygen



1.1 FMP10_ROU Class Reference 139

• Data field: <Start>,<End>

• Response: Data

• Start The starting date of the period - DDMMYY/6 bytes/

• End The end date of the period - DDMMYY /6 bytes/

• Data

1. 'F' if no tax rates for the period have been found, or in case of error

2. 'PAA,BB,CC,DD,DDMMYY' if rates have been found, where 'P' means 'PASS' after which the last active
rates for the period are listed out as well as the date of their entry.

3. If there are unused groups (disabled by command 83) for them, instead of rate in percent a 'DT' is
returned (Disabled tax).

The command prints a report on the changes made in the decimal points and tax rates during the selected period.

Parameters

startDate - StartDate The starting date of the period - DDMMYY/6 bytes/

endDate - EndDate The end date of the period - DDMMYY /6 bytes/

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

NSDictionary

• KeyValue - @"fResult" - 'F' if no tax rates for the period have been found, or in case of error 'P' means
'PASS' after which the last active rates for the period

• KeyValue - @"aA" - The last active rates for the period are listed out as well as the date of their entry. If
there are unused groups (disabled by command 83) for them, instead of rate in percent a 'DT' is returned
(Disabled tax).

• KeyValue - @"bB" - The last active rates for the period are listed out as well as the date of their entry. If
there are unused groups (disabled by command 83) for them, instead of rate in percent a 'DT' is returned
(Disabled tax).

• KeyValue - @"cC" - The last active rates for the period are listed out as well as the date of their entry. If
there are unused groups (disabled by command 83) for them, instead of rate in percent a 'DT' is returned
(Disabled tax).

• KeyValue - @"dD" - The last active rates for the period are listed out as well as the date of their entry. If
there are unused groups (disabled by command 83) for them, instead of rate in percent a 'DT' is returned
(Disabled tax).

• KeyValue - @"dDMMYY" - Day Month Year

1.1.2.112 command51Variant0Version0ToPrintOption:toDisplayOption:error:()

- (NSDictionary ∗) command51Variant0Version0ToPrintOption:

(NSString ∗) toPrintOption

toDisplayOption:(NSString ∗) toDisplayOption

error:(NSError ∗∗) error

33h(51) SUBTOTAL

Generated by Doxygen



140 Class Documentation

• Data field: toPrintOption,toDisplayOption

• Response: subTotal,taxGroupA,taxGroupB,taxGroupC,taxGroupD,taxGroupE,specialTax

• toPrintOption One byte, which if '1' the sum of the subtotal will be printed out.

• toDisplayOption One byte, which if '1' the sum of the subtotal will be displayed out.

• SubTotal The sum accumulated for the current fiscal receipt (10 bytes).

• taxGroupA The sum over tax group A /10 bytes/

• taxGroupB The sum over tax group B /10 bytes/

• taxGroupC The sum over tax group C /10 bytes/

• taxGroupD The sum over tax group D /10 bytes/

• taxGroupE The sum over tax group E - VAT exempt /10 bytes/

• specialTax The sum over special tax /10 bytes/

The sum of all sales registered in the fiscal receipt is calculated. The calculated total sum and the accumulated
separate sums for each tax group are returned to the PC.

Parameters

toPrintOption - One byte, which if '1' the sum of the subtotal will be printed out.

toDisplayOption - One byte, which if '1' the sum of the subtotal will be displayed out.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"subTotal" - The sum accumulated for the current fiscal receipt (10 bytes).

• KeyValue - @"taxGroupA" - The sum over tax group A /10 bytes/

• KeyValue - @"taxGroupB" - The sum over tax group B /10 bytes/

• KeyValue - @"taxGroupC" - The sum over tax group C /10 bytes/

• KeyValue - @"taxGroupD" - The sum over tax group D /10 bytes/

• KeyValue - @"taxGroupE" - The sum over tax group E - VAT exempt /10 bytes/

• KeyValue - @"specialTax" - The sum over special tax /10 bytes/

1.1.2.113 command51Variant0Version1ToPrintOption:toDisplayOption:subtotalWithPercentDiscount:error:()

- (NSDictionary ∗) command51Variant0Version1ToPrintOption:

(NSString ∗) toPrintOption

toDisplayOption:(NSString ∗) toDisplayOption

subtotalWithPercentDiscount:(NSString ∗) subtotalWithPercentDiscount

error:(NSError ∗∗) error

33h(51) SUBTOTAL

Generated by Doxygen



1.1 FMP10_ROU Class Reference 141

• Data field: toPrintOption,toDisplayOption,subtotalWithPercentDiscount

• Response: subTotal,taxGroupA,taxGroupB,taxGroupC,taxGroupD,taxGroupE,specialTax

• toPrintOption One byte, which if '1' the sum of the subtotal will be printed out.

• toDisplayOption One byte, which if '1' the sum of the subtotal will be displayed out.

• subtotalWithPercentDiscount The value of discount or surcharge in percent over the sum accumulated so far.

• subTotal The sum accumulated for the current fiscal receipt (10 bytes).

• taxGroupA The sum over tax group A /10 bytes/

• taxGroupB The sum over tax group B /10 bytes/

• taxGroupC The sum over tax group C /10 bytes/

• taxGroupD The sum over tax group D /10 bytes/

• taxGroupE The sum over tax group E - VAT exempt /10 bytes/

• specialTax The sum over special tax /10 bytes/

The sum of all sales registered in the fiscal receipt is calculated. The calculated total sum and the accumulated
separate sums for each tax group are returned to the PC.

Parameters

toPrintOption - One byte, which if '1' the sum of the subtotal will be printed out.

toDisplayOption - One byte, which if '1' the sum of the subtotal will be displayed out.

subtotalWithPercentDiscount - The value of discount or surcharge in percent over the sum accumulated so
far.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"subTotal" - The sum accumulated for the current fiscal receipt (10 bytes).

• KeyValue - @"taxGroupA" - The sum over tax group A /10 bytes/

• KeyValue - @"taxGroupB" - The sum over tax group B /10 bytes/

• KeyValue - @"taxGroupC" - The sum over tax group C /10 bytes/

• KeyValue - @"taxGroupD" - The sum over tax group D /10 bytes/

• KeyValue - @"taxGroupE" - The sum over tax group E - VAT exempt /10 bytes/

• KeyValue - @"specialTax" - The sum over special tax /10 bytes/

Generated by Doxygen



142 Class Documentation

1.1.2.114 command51Variant0Version2ToPrintOption:toDisplayOption:subtotalWithAbsoluteSumDiscount:error:()

- (NSDictionary ∗) command51Variant0Version2ToPrintOption:

(NSString ∗) toPrintOption

toDisplayOption:(NSString ∗) toDisplayOption

subtotalWithAbsoluteSumDiscount:(NSString ∗) subtotalWithAbsoluteSumDiscount

error:(NSError ∗∗) error

33h(51) SUBTOTAL

• Data field: toPrintOption,toDisplayOption,subtotalWithAbsoluteSumDiscount

• Response: subTotal,taxGroupA,taxGroupB,taxGroupC,taxGroupD,taxGroupE,specialTax

• toPrintOption One byte, which if '1' the sum of the subtotal will be printed out.

• toDisplayOption One byte, which if '1' the sum of the subtotal will be displayed out.

• subtotalWithAbsoluteSumDiscount The value of discount as absolute value (up to 8 digits).

The subtotal will be printed out.

• subTotal The sum accumulated for the current fiscal receipt (10 bytes).

• taxGroupA The sum over tax group A /10 bytes/

• taxGroupB The sum over tax group B /10 bytes/

• taxGroupC The sum over tax group C /10 bytes/

• taxGroupD The sum over tax group D /10 bytes/

• taxGroupE The sum over tax group E - VAT exempt /10 bytes/

• specialTax The sum over special tax /10 bytes/

The sum of all sales registered in the fiscal receipt is calculated. The calculated total sum and the accumulated
separate sums for each tax group are returned to the PC.

Parameters

toPrintOption - One byte, which if '1' the sum of the subtotal will be printed out.

toDisplayOption - One byte, which if '1' the sum of the subtotal will be displayed out.

subtotalWithAbsoluteSumDiscount - The value of discount as absolute value (up to 8 digits).

error pointer to NSError object, where error information is stored in case
function fails. You can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"subTotal" - The sum accumulated for the current fiscal receipt (10 bytes).

• KeyValue - @"taxGroupA" - The sum over tax group A /10 bytes/

• KeyValue - @"taxGroupB" - The sum over tax group B /10 bytes/

Generated by Doxygen



1.1 FMP10_ROU Class Reference 143

• KeyValue - @"taxGroupC" - The sum over tax group C /10 bytes/

• KeyValue - @"taxGroupD" - The sum over tax group D /10 bytes/

• KeyValue - @"taxGroupE" - The sum over tax group E - VAT exempt /10 bytes/

• KeyValue - @"specialTax" - The sum over special tax /10 bytes/

1.1.2.115 command53Variant0Version0PaidMode:amountIn:error:()

- (NSDictionary ∗) command53Variant0Version0PaidMode:

(NSString ∗) paidMode

amountIn:(NSString ∗) amountIn

error:(NSError ∗∗) error

35h(53) CALCULATION OF A TOTAL

• Data field:

1. paidMode

2. amountIn

• Response:

1. paidCode

2. amountOut

• paidMode Code indicating the terms of payment. It may have the following values:

1. 'P' Payment in cash

2. 'N' Payment via credit

3. 'C' Payment in cheques

4. 'D' Payment with a debit card

5. 'I' Programmable payment 1

6. 'J' Programmable payment 2

7. 'K' Programmable payment 3

8. 'L' Programmable payment 4

• amountIn The sum tendered (up to 10 meaningful symbols)

1. Depending on the code, the sums are accumulated in different registers and may be recovered in the
daily report.

• paidCode One byte - resulting from the execution of the command

1. 'F' Error

2. 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a negative
sub-total.

3. 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned to
Amount

4. 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be printed out
and the change will be returned to Amount.

Generated by Doxygen



144 Class Documentation

5. 'I' An error has occurred because the sum under one of the tax groups is negative. The current subtotal
is returned to Amount.

• amountOut Up to 9 digits with a sign. Depends on PaidCode.

This command starts the calculation of the sums from fiscal receipt, the printing of the sum with a special font. An
additional text may also be printed. When the command has been successfully executed a further command for
opening a cash drawer is activated.

The command will not be successful if:

• - No fiscal receipt has been opened,

• - The accumulated sum is negative,

• - If some of the accumulated sums under taxation (tax group) is negative.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

Parameters

paidMode - Code indicating the terms of payment. It may have the following values:

• 'P' Payment in cash

• 'N' Payment via credit

• 'C' Payment in cheques

• 'D' Payment with a debit card

• 'I' Programmable payment 1

• 'J' Programmable payment 2

• 'K' Programmable payment 3

• 'L' Programmable payment 4

amountIn - The sum tendered (up to 10 meaningful symbols). Depending on the code, the sums are
accumulated in different registers and may be recovered in the daily report.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"paidCode" - One byte - resulting from the execution of the command

• 'F' Error

• 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a nega-
tive sub-total.

• 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned
to Amount

• 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be
printed out and the change will be returned to Amount.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 145

• 'I' An error has occurred because the sum under one of the tax groups is negative. The current
subtotal is returned to Amount.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

• KeyValue - @"amountOut" - Up to 9 digits with a sign. Depends on PaidCode.

1.1.2.116 command53Variant0Version1TextRow2:paidMode:amountIn:error:()

- (NSDictionary ∗) command53Variant0Version1TextRow2:

(NSString ∗) textRow2

paidMode:(NSString ∗) paidMode

amountIn:(NSString ∗) amountIn

error:(NSError ∗∗) error

35h(53) CALCULATION OF A TOTAL

• Data field:

1. textRow2

2. paidMode

3. amountIn

• Response:

1. paidCode

2. amountOut

• textRow2 A text of 30 bytes containing the second line

• paidMode Code indicating the terms of payment. It may have the following values:

1. 'P' Payment in cash

2. 'N' Payment via credit

3. 'C' Payment in cheques

4. 'D' Payment with a debit card

5. 'I' Programmable payment 1

6. 'J' Programmable payment 2

7. 'K' Programmable payment 3

8. 'L' Programmable payment 4

• amountIn The sum tendered (up to 10 meaningful symbols)

1. Depending on the code, the sums are accumulated in different registers and may be recovered in the
daily report.

Generated by Doxygen



146 Class Documentation

• paidCode One byte - resulting from the execution of the command

1. 'F' Error

2. 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a negative
sub-total.

3. 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned to
Amount

4. 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be printed out
and the change will be returned to Amount.

5. 'I' An error has occurred because the sum under one of the tax groups is negative. The current subtotal
is returned to Amount.

• amountOut Up to 9 digits with a sign. Depends on PaidCode.

This command starts the calculation of the sums from fiscal receipt, the printing of the sum with a special font. An
additional text may also be printed. When the command has been successfully executed a further command for
opening a cash drawer is activated.

The command will not be successful if:

• - No fiscal receipt has been opened,

• - The accumulated sum is negative,

• - If some of the accumulated sums under taxation (tax group) is negative.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

Parameters

textRow2 - A text of 30 bytes containing the second line

paidMode - Code indicating the terms of payment. It may have the following values:

• 'P' Payment in cash

• 'N' Payment via credit

• 'C' Payment in cheques

• 'D' Payment with a debit card

• 'I' Programmable payment 1

• 'J' Programmable payment 2

• 'K' Programmable payment 3

• 'L' Programmable payment 4

amountIn - The sum tendered (up to 10 meaningful symbols). Depending on the code, the sums are
accumulated in different registers and may be recovered in the daily report.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 147

Returns

NSDictionary
• KeyValue - @"paidCode" - One byte - resulting from the execution of the command
• 'F' Error
• 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a nega-

tive sub-total.
• 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned

to Amount
• 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be

printed out and the change will be returned to Amount.
• 'I' An error has occurred because the sum under one of the tax groups is negative. The current

subtotal is returned to Amount.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

• KeyValue - @"amountOut" - Up to 9 digits with a sign. Depends on PaidCode.

1.1.2.117 command53Variant0Version2TextRow1:paidMode:amountIn:error:()

- (NSDictionary ∗) command53Variant0Version2TextRow1:

(NSString ∗) textRow1

paidMode:(NSString ∗) paidMode

amountIn:(NSString ∗) amountIn

error:(NSError ∗∗) error

35h(53) CALCULATION OF A TOTAL

• Data field:

1. textRow1

2. paidMode

3. amountIn

• Response:

1. paidCode

2. amountOut

• textRow1 A text of 30 bytes containing the first line

• paidMode Code indicating the terms of payment. It may have the following values:

1. 'P' Payment in cash

2. 'N' Payment via credit

Generated by Doxygen



148 Class Documentation

3. 'C' Payment in cheques

4. 'D' Payment with a debit card

5. 'I' Programmable payment 1

6. 'J' Programmable payment 2

7. 'K' Programmable payment 3

8. 'L' Programmable payment 4

• amountIn The sum tendered (up to 10 meaningful symbols)

1. Depending on the code, the sums are accumulated in different registers and may be recovered in the
daily report.

• paidCode One byte - resulting from the execution of the command

1. 'F' Error

2. 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a negative
sub-total.

3. 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned to
Amount

4. 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be printed out
and the change will be returned to Amount.

5. 'I' An error has occurred because the sum under one of the tax groups is negative. The current subtotal
is returned to Amount.

• amountOut Up to 9 digits with a sign. Depends on PaidCode.

This command starts the calculation of the sums from fiscal receipt, the printing of the sum with a special font. An
additional text may also be printed. When the command has been successfully executed a further command for
opening a cash drawer is activated.

The command will not be successful if:

• - No fiscal receipt has been opened,

• - The accumulated sum is negative,

• - If some of the accumulated sums under taxation (tax group) is negative.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

Parameters

textRow1 - A text of 30 bytes containing the first line

Generated by Doxygen



1.1 FMP10_ROU Class Reference 149

Parameters

paidMode - Code indicating the terms of payment. It may have the following values:

• 'P' Payment in cash

• 'N' Payment via credit

• 'C' Payment in cheques

• 'D' Payment with a debit card

• 'I' Programmable payment 1

• 'J' Programmable payment 2

• 'K' Programmable payment 3

• 'L' Programmable payment 4

amountIn - The sum tendered (up to 10 meaningful symbols). Depending on the code, the sums are
accumulated in different registers and may be recovered in the daily report.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary
• KeyValue - @"paidCode" - One byte - resulting from the execution of the command
• 'F' Error
• 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a nega-

tive sub-total.
• 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned

to Amount
• 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be

printed out and the change will be returned to Amount.
• 'I' An error has occurred because the sum under one of the tax groups is negative. The current

subtotal is returned to Amount.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

• KeyValue - @"amountOut" - Up to 9 digits with a sign. Depends on PaidCode.

1.1.2.118 command53Variant0Version4TextRow1:textRow2:paidMode:amountIn:error:()

- (NSDictionary ∗) command53Variant0Version4TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

paidMode:(NSString ∗) paidMode

amountIn:(NSString ∗) amountIn

error:(NSError ∗∗) error

35h(53) CALCULATION OF A TOTAL

Generated by Doxygen



150 Class Documentation

• Data field:

1. textRow1

2. textRow2

3. paidMode

4. amountIn

• Response:

1. paidCode

2. amountOut

• textRow1 A text of 30 bytes containing the first line

• textRow2 A text of 30 bytes containing the second line

• paidMode Code indicating the terms of payment. It may have the following values:

1. 'P' Payment in cash

2. 'N' Payment via credit

3. 'C' Payment in cheques

4. 'D' Payment with a debit card

5. 'I' Programmable payment 1

6. 'J' Programmable payment 2

7. 'K' Programmable payment 3

8. 'L' Programmable payment 4

• amountIn The sum tendered (up to 10 meaningful symbols)

1. Depending on the code, the sums are accumulated in different registers and may be recovered in the
daily report.

• paidCode One byte - resulting from the execution of the command

1. 'F' Error

2. 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a negative
sub-total.

3. 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned to
Amount

4. 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be printed out
and the change will be returned to Amount.

5. 'I' An error has occurred because the sum under one of the tax groups is negative. The current subtotal
is returned to Amount.

• amountOut Up to 9 digits with a sign. Depends on PaidCode.

This command starts the calculation of the sums from fiscal receipt, the printing of the sum with a special font. An
additional text may also be printed. When the command has been successfully executed a further command for
opening a cash drawer is activated.

The command will not be successful if:

• - No fiscal receipt has been opened,

Generated by Doxygen



1.1 FMP10_ROU Class Reference 151

• - The accumulated sum is negative,

• - If some of the accumulated sums under taxation (tax group) is negative.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

Parameters

textRow1 - A text of 30 bytes containing the first line

textRow2 - A text of 30 bytes containing the second line

paidMode - Code indicating the terms of payment. It may have the following values:

• 'P' Payment in cash

• 'N' Payment via credit

• 'C' Payment in cheques

• 'D' Payment with a debit card

• 'I' Programmable payment 1

• 'J' Programmable payment 2

• 'K' Programmable payment 3

• 'L' Programmable payment 4

amountIn - The sum tendered (up to 10 meaningful symbols). Depending on the code, the sums are
accumulated in different registers and may be recovered in the daily report.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary
• KeyValue - @"paidCode" - One byte - resulting from the execution of the command
• 'F' Error
• 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a nega-

tive sub-total.
• 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned

to Amount
• 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be

printed out and the change will be returned to Amount.
• 'I' An error has occurred because the sum under one of the tax groups is negative. The current

subtotal is returned to Amount.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

• KeyValue - @"amountOut" - Up to 9 digits with a sign. Depends on PaidCode.

Generated by Doxygen



152 Class Documentation

1.1.2.119 command53Variant1Version0AndReturnError:()

- (NSDictionary ∗) command53Variant1Version0AndReturnError:

(NSError ∗∗) error

35h(53) CALCULATION OF A TOTAL

Payment in cash!!!

• Data field: None

• Response:

1. paidCode

2. amountOut

• paidCode One byte - resulting from the execution of the command

1. 'F' Error

2. 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a negative
sub-total.

3. 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned to
Amount

4. 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be printed out
and the change will be returned to Amount.

5. 'I' An error has occurred because the sum under one of the tax groups is negative. The current subtotal
is returned to Amount.

• amountOut Up to 9 digits with a sign. Depends on PaidCode.

This command starts the calculation of the sums from fiscal receipt, the printing of the sum with a special font. An
additional text may also be printed. When the command has been successfully executed a further command for
opening a cash drawer is activated.

The command will not be successful if:

• - No fiscal receipt has been opened,

• - The accumulated sum is negative,

• - If some of the accumulated sums under taxation (tax group) is negative.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 153

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil
if you don't want that information

Returns

NSDictionary
• KeyValue - @"paidCode" - One byte - resulting from the execution of the command
• 'F' Error
• 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a nega-

tive sub-total.
• 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned

to Amount
• 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be

printed out and the change will be returned to Amount.
• 'I' An error has occurred because the sum under one of the tax groups is negative. The current

subtotal is returned to Amount.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

• KeyValue - @"amountOut" - Up to 9 digits with a sign. Depends on PaidCode.

1.1.2.120 command53Variant1Version1TextRow2:error:()

- (NSDictionary ∗) command53Variant1Version1TextRow2:

(NSString ∗) textRow2

error:(NSError ∗∗) error

35h(53) CALCULATION OF A TOTAL

Payment in cash!!!

• Data field:

1. textRow2

• Response:

1. paidCode

2. amountOut

• textRow2 A text of 30 bytes containing the second line

• paidCode One byte - resulting from the execution of the command

Generated by Doxygen



154 Class Documentation

1. 'F' Error

2. 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a negative
sub-total.

3. 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned to
Amount

4. 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be printed out
and the change will be returned to Amount.

5. 'I' An error has occurred because the sum under one of the tax groups is negative. The current subtotal
is returned to Amount.

• amountOut Up to 9 digits with a sign. Depends on PaidCode.

This command starts the calculation of the sums from fiscal receipt, the printing of the sum with a special font. An
additional text may also be printed. When the command has been successfully executed a further command for
opening a cash drawer is activated.

The command will not be successful if:

• - No fiscal receipt has been opened,

• - The accumulated sum is negative,

• - If some of the accumulated sums under taxation (tax group) is negative.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

Parameters

textRow2 - A text of 30 bytes containing the second line

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"paidCode" - One byte - resulting from the execution of the command

• 'F' Error

• 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a nega-
tive sub-total.

• 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned
to Amount

• 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be
printed out and the change will be returned to Amount.

• 'I' An error has occurred because the sum under one of the tax groups is negative. The current
subtotal is returned to Amount.

Notes:

Generated by Doxygen



1.1 FMP10_ROU Class Reference 155

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

• KeyValue - @"amountOut" - Up to 9 digits with a sign. Depends on PaidCode.

1.1.2.121 command53Variant1Version2TextRow1:error:()

- (NSDictionary ∗) command53Variant1Version2TextRow1:

(NSString ∗) textRow1

error:(NSError ∗∗) error

35h(53) CALCULATION OF A TOTAL

Payment in cash!!!

• Data field:

1. textRow1

• Response:

1. paidCode

2. amountOut

• textRow1 A text of 30 bytes containing the first line

• paidCode One byte - resulting from the execution of the command

1. 'F' Error

2. 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a negative
sub-total.

3. 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned to
Amount

4. 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be printed out
and the change will be returned to Amount.

5. 'I' An error has occurred because the sum under one of the tax groups is negative. The current subtotal
is returned to Amount.

• amountOut Up to 9 digits with a sign. Depends on PaidCode.

This command starts the calculation of the sums from fiscal receipt, the printing of the sum with a special font. An
additional text may also be printed. When the command has been successfully executed a further command for
opening a cash drawer is activated.

The command will not be successful if:

• - No fiscal receipt has been opened,

• - The accumulated sum is negative,

• - If some of the accumulated sums under taxation (tax group) is negative.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

Generated by Doxygen



156 Class Documentation

Parameters

textRow1 - A text of 30 bytes containing the first line

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"paidCode" - One byte - resulting from the execution of the command

• 'F' Error

• 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a nega-
tive sub-total.

• 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned
to Amount

• 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be
printed out and the change will be returned to Amount.

• 'I' An error has occurred because the sum under one of the tax groups is negative. The current
subtotal is returned to Amount.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

• KeyValue - @"amountOut" - Up to 9 digits with a sign. Depends on PaidCode.

1.1.2.122 command53Variant1Version3TextRow1:textRow2:error:()

- (NSDictionary ∗) command53Variant1Version3TextRow1:

(NSString ∗) textRow1

textRow2:(NSString ∗) textRow2

error:(NSError ∗∗) error

35h(53) CALCULATION OF A TOTAL

Payment in cash!!!

• Data field:

1. textRow1

2. textRow2

• Response:

1. paidCode

2. amountOut

Generated by Doxygen



1.1 FMP10_ROU Class Reference 157

• textRow1 A text of 30 bytes containing the first line

• textRow2 A text of 30 bytes containing the second line

• paidCode One byte - resulting from the execution of the command

1. 'F' Error

2. 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a negative
sub-total.

3. 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned to
Amount

4. 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be printed out
and the change will be returned to Amount.

5. 'I' An error has occurred because the sum under one of the tax groups is negative. The current subtotal
is returned to Amount.

• amountOut Up to 9 digits with a sign. Depends on PaidCode.

This command starts the calculation of the sums from fiscal receipt, the printing of the sum with a special font. An
additional text may also be printed. When the command has been successfully executed a further command for
opening a cash drawer is activated.

The command will not be successful if:

• - No fiscal receipt has been opened,

• - The accumulated sum is negative,

• - If some of the accumulated sums under taxation (tax group) is negative.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

Parameters

textRow1 - A text of 30 bytes containing the first line

textRow2 - A text of 30 bytes containing the second line

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary
• KeyValue - @"paidCode" - One byte - resulting from the execution of the command
• 'F' Error
• 'E' The calculated sub-total sum is negative. Payment is withheld and Amount will contain a nega-

tive sub-total.
• 'D' If the paid sum is less than the sum on the receipt. The residual sum due for payment is returned

to Amount

Generated by Doxygen



158 Class Documentation

• 'R' When the paid sum is greater than the sum on the receipt. A message "CHANGE" will be
printed out and the change will be returned to Amount.

• 'I' An error has occurred because the sum under one of the tax groups is negative. The current
subtotal is returned to Amount.

Notes:

1. After the successful completion of the command, fiscal printer will not perform the commands 49 and 51
within the opened receipt, although it can still perform command 53.

2. The codes of error 'E' and 'I' will never appear in this version of the printer because commands 49 and 52
(registering a sale) do not accept negative sums.

• KeyValue - @"amountOut" - Up to 9 digits with a sign. Depends on PaidCode.

1.1.2.123 command54Variant0Version0TextIn:error:()

- (bool) command54Variant0Version0TextIn:

(NSString ∗) textIn

error:(NSError ∗∗) error

36h(54) PRINTING A FREE FISCAL TEXT

• Data field: textIn

• Response: None

• textIn Up to 30 bytes text

A fiscal receipt must be opened because, in the opposite case, the text will not be printed and the S1.1. flag is
raised. If the text is longer than 30 symbols, the redundant letters are cut off.

Parameters

text←↩

In
- Up to 30 bytes text

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.124 command56Variant0Version0AndReturnError:()

- (NSDictionary ∗) command56Variant0Version0AndReturnError:

(NSError ∗∗) error

Generated by Doxygen



1.1 FMP10_ROU Class Reference 159

38h(56) CLOSING A FISCAL RECEIPT

• Data field: No data

• Response: allReceipt, fiscalReceipt

• allReceipt All issued receipts from the last daily closure up to the moment

• fiscalReceipt All issued fiscal receipts from the last daily closure up to the moment

The accumulated sums from the fiscal receipt are added to the daily sums in the registries of operational memory.

The command will not be successful if:

• - No fiscal receipt has been opened,

• - Command 53 (35h) has failed,

• - The sum paid under command 53 is less than the total sum on the fiscal receipt.

Returns

NSDictionary

• KeyValue - @"allReceipt" - All issued receipts from the last daily closure up to the moment

• KeyValue - @"fiscalReceipt" - All issued fiscal receipts from the last daily closure up to the moment

1.1.2.125 command58Variant0Version0SignPlu:itemQuantity:error:()

- (bool) command58Variant0Version0SignPlu:

(NSString ∗) signPlu

itemQuantity:(NSString ∗) itemQuantity

error:(NSError ∗∗) error

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• Data field:

1. signPlu

2. itemQuantity

• Response:

1. None

• signPlu The individual number of the item - a whole number between 1 and 999999999 (not more than 9
digits)(with sign "+" or "-" ).

• itemQuantity The quantity of the items for sale with a default value of 1.000. Length cannot be longer than 8
meaningful digits (not more than 3 after the decimal point). The resulting singular price (∗Quan) is rounded
up to the set number of digits after the decimal point and also cannot be greater than 9 meaningful digits.

Generated by Doxygen



160 Class Documentation

The fiscal printer performs the following operations:

• - The name, price and tax group of the item is read from items list, programmed in the printer.

• - Prints out the name of the item, selected quantity and singular price. The second printed line contains
the final price together with the letter, designating the tax group from which the sale will be performed. The
registries for accumulated sums and item quantities are updated.

• - The price of the item is added to the accumulated sums in the registries of operational memory. In case of
overflow, the respective bytes from the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is added in specially selected
registries in the printer. The values from the whole day will be printed together with the daily financial report.

The command will not be successful if:

• - No item has been programmed under the given number,

• - No fiscal receipt has been opened,

• - The maximum number of sales for one receipt (380) has already been registered.

• - The command 35h has been successfully executed,

• - The sum under one or more of the tax groups has turned out negative,

• - The sum of surcharges and discounts within the receipt has remained negative,

• - The journal is full

Parameters

signPlu - The individual number of the item - a whole number between 1 and 999999999 (not more than
9 digits)(with sign "+" or "-" ).

itemQuantity - The quantity of the items for sale with a default value of 1.000. Length cannot be longer than 8
meaningful digits (not more than 3 after the decimal point). The resulting singular price (∗Quan)
is rounded up to the set number of digits after the decimal point and also cannot be greater than
9 meaningful digits.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.126 command58Variant0Version1SignPlu:itemQuantity:specialTax:error:()

- (bool) command58Variant0Version1SignPlu:

(NSString ∗) signPlu

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

error:(NSError ∗∗) error

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

Generated by Doxygen



1.1 FMP10_ROU Class Reference 161

• Data field:

1. signPlu

2. itemQuantity

3. specialTax

• Response:

1. None

• signPlu The individual number of the item - a whole number between 1 and 999999999 (not more than 9
digits)(with sign "+" or "-" ).

• itemQuantity The quantity of the items for sale with a default value of 1.000. Length cannot be longer than 8
meaningful digits (not more than 3 after the decimal point). The resulting singular price (∗Quan) is rounded
up to the set number of digits after the decimal point and also cannot be greater than 9 meaningful digits.

• specialTax The dimensions of a single price. This value is subtracted from the single price before applying
any VAT calculations and is printed on a separate line in the receipt. The accumulated value is stored in the
fiscal memory and is printed in the Z-report an periodical reports, if not 0.

The fiscal printer performs the following operations:

• - The name, price and tax group of the item is read from items list, programmed in the printer.

• - Prints out the name of the item, selected quantity and singular price. The second printed line contains
the final price together with the letter, designating the tax group from which the sale will be performed. The
registries for accumulated sums and item quantities are updated.

• - The price of the item is added to the accumulated sums in the registries of operational memory. In case of
overflow, the respective bytes from the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is added in specially selected
registries in the printer. The values from the whole day will be printed together with the daily financial report.

The command will not be successful if:

• - No item has been programmed under the given number,

• - No fiscal receipt has been opened,

• - The maximum number of sales for one receipt (380) has already been registered.

• - The command 35h has been successfully executed,

• - The sum under one or more of the tax groups has turned out negative,

• - The sum of surcharges and discounts within the receipt has remained negative,

• - The journal is full

Parameters

signPlu - The individual number of the item - a whole number between 1 and 999999999 (not more than
9 digits)(with sign "+" or "-" ).

itemQuantity - The quantity of the items for sale with a default value of 1.000. Length cannot be longer than 8
meaningful digits (not more than 3 after the decimal point). The resulting singular price (∗Quan)
is rounded up to the set number of digits after the decimal point and also cannot be greater than
9 meaningful digits.

specialTax - The dimensions of a single price. This value is subtracted from the single price before
applying any VAT calculations and is printed on a separate line in the receipt. The accumulated
value is stored in the fiscal memory and is printed in the Z-report an periodical reports, if not 0.

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Generated by Doxygen



162 Class Documentation

Returns

TRUE upon success, FALSE otherwise

1.1.2.127 command58Variant1Version0SignPlu:itemQuantity:sellWithAbsoluteSumDiscount:error:()

- (bool) command58Variant1Version0SignPlu:

(NSString ∗) signPlu

itemQuantity:(NSString ∗) itemQuantity

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• Data field:

1. signPlu

2. itemQuantity

3. sellWithAbsoluteSumDiscount

• Response:

1. None

• signPlu The individual number of the item - a whole number between 1 and 999999999 (not more than 9
digits)(with sign "+" or "-" ).

• itemQuantity The quantity of the items for sale with a default value of 1.000. Length cannot be longer than 8
meaningful digits (not more than 3 after the decimal point). The resulting singular price (∗Quan) is rounded
up to the set number of digits after the decimal point and also cannot be greater than 9 meaningful digits.

• sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the current
sale. Up to 8 significant digits.

The fiscal printer performs the following operations:

• - The name, price and tax group of the item is read from items list, programmed in the printer.

• - Prints out the name of the item, selected quantity and singular price. The second printed line contains
the final price together with the letter, designating the tax group from which the sale will be performed. The
registries for accumulated sums and item quantities are updated.

• - The price of the item is added to the accumulated sums in the registries of operational memory. In case of
overflow, the respective bytes from the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is added in specially selected
registries in the printer. The values from the whole day will be printed together with the daily financial report.

The command will not be successful if:

• - No item has been programmed under the given number,

• - No fiscal receipt has been opened,

• - The maximum number of sales for one receipt (380) has already been registered.

• - The command 35h has been successfully executed,

• - The sum under one or more of the tax groups has turned out negative,

• - The sum of surcharges and discounts within the receipt has remained negative,

• - The journal is full

Generated by Doxygen



1.1 FMP10_ROU Class Reference 163

Parameters

signPlu - The individual number of the item - a whole number between 1 and
999999999 (not more than 9 digits)(with sign "+" or "-" ).

itemQuantity - The quantity of the items for sale with a default value of 1.000. Length cannot
be longer than 8 meaningful digits (not more than 3 after the decimal point).
The resulting singular price (∗Quan) is rounded up to the set number of digits
after the decimal point and also cannot be greater than 9 meaningful digits.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the current
sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.128 command58Variant1Version1SignPlu:itemQuantity:specialTax:sellWithAbsoluteSumDiscount:error:()

- (bool) command58Variant1Version1SignPlu:

(NSString ∗) signPlu

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithAbsoluteSumDiscount:(NSString ∗) sellWithAbsoluteSumDiscount

error:(NSError ∗∗) error

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• Data field:

1. signPlu

2. itemQuantity

3. specialTax

4. sellWithAbsoluteSumDiscount

• Response:

1. None

• signPlu The individual number of the item - a whole number between 1 and 999999999 (not more than 9
digits)(with sign "+" or "-" ).

• itemQuantity The quantity of the items for sale with a default value of 1.000. Length cannot be longer than 8
meaningful digits (not more than 3 after the decimal point). The resulting singular price (∗Quan) is rounded
up to the set number of digits after the decimal point and also cannot be greater than 9 meaningful digits.

• specialTax The dimensions of a single price. This value is subtracted from the single price before applying
any VAT calculations and is printed on a separate line in the receipt. The accumulated value is stored in the
fiscal memory and is printed in the Z-report an periodical reports, if not 0.

• sellWithAbsoluteSumDiscount The value of discount or surcharge (depending on the sign) over the current
sale. Up to 8 significant digits.

Generated by Doxygen



164 Class Documentation

The fiscal printer performs the following operations:

• - The name, price and tax group of the item is read from items list, programmed in the printer.

• - Prints out the name of the item, selected quantity and singular price. The second printed line contains
the final price together with the letter, designating the tax group from which the sale will be performed. The
registries for accumulated sums and item quantities are updated.

• - The price of the item is added to the accumulated sums in the registries of operational memory. In case of
overflow, the respective bytes from the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is added in specially selected
registries in the printer. The values from the whole day will be printed together with the daily financial report.

The command will not be successful if:

• - No item has been programmed under the given number,

• - No fiscal receipt has been opened,

• - The maximum number of sales for one receipt (380) has already been registered.

• - The command 35h has been successfully executed,

• - The sum under one or more of the tax groups has turned out negative,

• - The sum of surcharges and discounts within the receipt has remained negative,

• - The journal is full

Parameters

signPlu - The individual number of the item - a whole number between 1 and
999999999 (not more than 9 digits)(with sign "+" or "-" ).

itemQuantity - The quantity of the items for sale with a default value of 1.000. Length cannot
be longer than 8 meaningful digits (not more than 3 after the decimal point).
The resulting singular price (∗Quan) is rounded up to the set number of digits
after the decimal point and also cannot be greater than 9 meaningful digits.

specialTax - The dimensions of a single price. This value is subtracted from the single
price before applying any VAT calculations and is printed on a separate line in
the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the current
sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.129 command58Variant2Version0SignPlu:itemQuantity:sellWithPercentDiscount:error:()

- (bool) command58Variant2Version0SignPlu:

(NSString ∗) signPlu

Generated by Doxygen



1.1 FMP10_ROU Class Reference 165

itemQuantity:(NSString ∗) itemQuantity

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• Data field:

1. signPlu

2. itemQuantity

3. sellWithPercentDiscount

• Response:

1. None

• signPlu The individual number of the item - a whole number between 1 and 999999999 (not more than 9
digits)(with sign "+" or "-" ).

• itemQuantity The quantity of the items for sale with a default value of 1.000. Length cannot be longer than 8
meaningful digits (not more than 3 after the decimal point). The resulting singular price (∗Quan) is rounded
up to the set number of digits after the decimal point and also cannot be greater than 9 meaningful digits.

• sellWithPercentDiscount The value of surcharge or discount (depending on the symbol) in percent over the
current sale. Possible values are between -99.00% to 99.00%. Up to 2 digits after the decimal point are
acceptable.

The fiscal printer performs the following operations:

• - The name, price and tax group of the item is read from items list, programmed in the printer.

• - Prints out the name of the item, selected quantity and singular price. The second printed line contains
the final price together with the letter, designating the tax group from which the sale will be performed. The
registries for accumulated sums and item quantities are updated.

• - The price of the item is added to the accumulated sums in the registries of operational memory. In case of
overflow, the respective bytes from the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is added in specially selected
registries in the printer. The values from the whole day will be printed together with the daily financial report.

The command will not be successful if:

• - No item has been programmed under the given number,

• - No fiscal receipt has been opened,

• - The maximum number of sales for one receipt (380) has already been registered.

• - The command 35h has been successfully executed,

• - The sum under one or more of the tax groups has turned out negative,

• - The sum of surcharges and discounts within the receipt has remained negative,

• - The journal is full

Generated by Doxygen



166 Class Documentation

Parameters

signPlu - The individual number of the item - a whole number between 1 and 999999999
(not more than 9 digits)(with sign "+" or "-" ).

itemQuantity - The quantity of the items for sale with a default value of 1.000. Length cannot be
longer than 8 meaningful digits (not more than 3 after the decimal point). The
resulting singular price (∗Quan) is rounded up to the set number of digits after the
decimal point and also cannot be greater than 9 meaningful digits.

sellWithPercentDiscount - The value of surcharge or discount (depending on the symbol) in percent over the
current sale. Possible values are between -99.00% to 99.00%. Up to 2 digits after
the decimal point are acceptable.

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.130 command58Variant2Version1SignPlu:itemQuantity:specialTax:sellWithPercentDiscount:error:()

- (bool) command58Variant2Version1SignPlu:

(NSString ∗) signPlu

itemQuantity:(NSString ∗) itemQuantity

specialTax:(NSString ∗) specialTax

sellWithPercentDiscount:(NSString ∗) sellWithPercentDiscount

error:(NSError ∗∗) error

3Ah(58) REGISTERING THE SALE OF AN PROGRAMMED ITEM

• Data field:

1. signPlu

2. itemQuantity

3. specialTax

4. sellWithPercentDiscount

• Response:

1. None

• signPlu The individual number of the item - a whole number between 1 and 999999999 (not more than 9
digits)(with sign "+" or "-" ).

• itemQuantity The quantity of the items for sale with a default value of 1.000. Length cannot be longer than 8
meaningful digits (not more than 3 after the decimal point). The resulting singular price (∗Quan) is rounded
up to the set number of digits after the decimal point and also cannot be greater than 9 meaningful digits.

• specialTax The dimensions of a single price. This value is subtracted from the single price before applying
any VAT calculations and is printed on a separate line in the receipt. The accumulated value is stored in the
fiscal memory and is printed in the Z-report an periodical reports, if not 0.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 167

• sellWithPercentDiscount The value of surcharge or discount (depending on the symbol) in percent over the
current sale. Possible values are between -99.00% to 99.00%. Up to 2 digits after the decimal point are
acceptable.

The fiscal printer performs the following operations:

• - The name, price and tax group of the item is read from items list, programmed in the printer.

• - Prints out the name of the item, selected quantity and singular price. The second printed line contains
the final price together with the letter, designating the tax group from which the sale will be performed. The
registries for accumulated sums and item quantities are updated.

• - The price of the item is added to the accumulated sums in the registries of operational memory. In case of
overflow, the respective bytes from the status field will be set.

• - If there is a discount or surcharge, it is printed out on a separate line and is added in specially selected
registries in the printer. The values from the whole day will be printed together with the daily financial report.

The command will not be successful if:

• - No item has been programmed under the given number,

• - No fiscal receipt has been opened,

• - The maximum number of sales for one receipt (380) has already been registered.

• - The command 35h has been successfully executed,

• - The sum under one or more of the tax groups has turned out negative,

• - The sum of surcharges and discounts within the receipt has remained negative,

• - The journal is full

Parameters

signPlu - The individual number of the item - a whole number between 1 and
999999999 (not more than 9 digits)(with sign "+" or "-" ).

itemQuantity - The quantity of the items for sale with a default value of 1.000. Length cannot
be longer than 8 meaningful digits (not more than 3 after the decimal point).
The resulting singular price (∗Quan) is rounded up to the set number of digits
after the decimal point and also cannot be greater than 9 meaningful digits.

specialTax - The dimensions of a single price. This value is subtracted from the single
price before applying any VAT calculations and is printed on a separate line in
the receipt. The accumulated value is stored in the fiscal memory and is
printed in the Z-report an periodical reports, if not 0.

sellWithAbsoluteSumDiscount - The value of discount or surcharge (depending on the sign) over the current
sale. Up to 8 significant digits.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



168 Class Documentation

1.1.2.131 command60Variant0Version0AndReturnError:()

- (bool) command60Variant0Version0AndReturnError:

(NSError ∗∗) error

3Ch(60) CANCEL FISCAL RECEIPT

• Data field: None

• Response: None

The command cancels an open fiscal receipt. All sales in the receipt are discarded. The message "===CANCE←↩

LLED===" is printed and then the receipt is closed as non-fiscal. The command is not permitted, if command 53
(Total) is already executed for this receipt.

Returns

TRUE upon success, FALSE otherwise

1.1.2.132 command61Variant0Version0TargetDate:targetTime:error:()

- (bool) command61Variant0Version0TargetDate:

(NSString ∗) targetDate

targetTime:(NSString ∗) targetTime

error:(NSError ∗∗) error

3Dh(61) SETTING THE CLOCK - DATE AND HOUR

• Data field:

1. targetDate

2. targetTime

• Response: None

You cannot set a date, which is earlier than the date of the last entry into the fiscal memory of device and the capacity
of this memory includes the year 2099. After RESET of memory, this command must be executed - otherwise, the
normal functioning of device cannot be resumed. The printer's real-time clock must always be set correctly.

Parameters

targetDate - DD-MM-YY

targetTime - HH:MM[:SS]

error pointer to NSError object, where error information is stored in case function fails. You can pass nil
if you don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 169

Returns

TRUE upon success, FALSE otherwise

1.1.2.133 command62Variant0Version0AndReturnError:()

- (NSDictionary ∗) command62Variant0Version0AndReturnError:

(NSError ∗∗) error

3Eh (62) READING CURRENT DATE AND HOUR

• Data field: None

• Response:

1. outputText DD-MM-YY HH:MM:SS

Returns

NSDictionary

• KeyValue - @"outputText" - DD-MM-YY HH:MM:SS

1.1.2.134 command64Variant0Version0AndReturnError:()

- (NSDictionary ∗) command64Variant0Version0AndReturnError:

(NSError ∗∗) error

40h(64) LAST FISCAL CLOSURE DETAILS

• Data field: None

• Response:

1. errorCode

2. receiptCount

3. totalSumInTaxGroupA

4. totalSumInTaxGroupB

5. totalSumInTaxGroupC

6. totalSumInTaxGroupD

7. totalSumInTaxGroupE

8. specialTaxSum

9. fiscalRecordDate

• errorCode:

1. 'P' Successful command. Data present after ',' symbol.

2. 'F' Can't read last record. No data present.

• receiptCount Receipt count

• totalSumInTaxGroupX VAT group total (12 bytes with sign).

• specialTax Special tax sum (12 bytes with sign).

• fiscalRecordDate Closure date in format DDMMYY.

Generated by Doxygen



170 Class Documentation

Returns

NSDictionary

• KeyValue - @"errorCode" - 'P' Successful command. Data present after ',' symbol. 'F' Can't read last
record. No data present.

• KeyValue - @"receiptCount" - Receipt count

• KeyValue - @"totalSumInTaxGroupA" - VAT group total (12 bytes with sign).

• KeyValue - @"totalSumInTaxGroupB" - VAT group total (12 bytes with sign).

• KeyValue - @"totalSumInTaxGroupC" - VAT group total (12 bytes with sign).

• KeyValue - @"totalSumInTaxGroupD" - VAT group total (12 bytes with sign).

• KeyValue - @"totalSumInTaxGroupE" - VAT group total (12 bytes with sign).

• KeyValue - @"specialTax" - Special tax sum (12 bytes with sign).

• KeyValue - @"fiscalRecordDate" - Closure date in format DDMMYY.

1.1.2.135 command65Variant0Version0AndReturnError:()

- (NSDictionary ∗) command65Variant0Version0AndReturnError:

(NSError ∗∗) error

41h(65) DAILY TOTALS

• Data field: None

• Response:

1. totalSumInTaxGroupA

2. totalSumInTaxGroupB

3. totalSumInTaxGroupC

4. totalSumInTaxGroupD

5. totalSumInTaxGroupE

6. specialTax

• totalSumInTaxGroupX VAT group total (12 bytes with sign).

• specialTax Special tax sum (12 bytes with sign).

Returns

NSDictionary

• KeyValue - @"totalSumInTaxGroupA" - VAT group total (12 bytes with sign).

• KeyValue - @"totalSumInTaxGroupB" - VAT group total (12 bytes with sign).

• KeyValue - @"totalSumInTaxGroupC" - VAT group total (12 bytes with sign).

• KeyValue - @"totalSumInTaxGroupD" - VAT group total (12 bytes with sign).

• KeyValue - @"totalSumInTaxGroupE" - VAT group total (12 bytes with sign).

• KeyValue - @"specialTax" - Special tax sum (12 bytes with sign).

Generated by Doxygen



1.1 FMP10_ROU Class Reference 171

1.1.2.136 command68Variant0Version0AndReturnError:()

- (NSDictionary ∗) command68Variant0Version0AndReturnError:

(NSError ∗∗) error

44h (68) THE NUMBER OF FREE FIELDS IN THE FISCAL MEMORY

• Data field: None

• Response:

1. logicalFiscalRecordsCount

• logicalFiscalRecordsCount The number of logical locations for fiscal entries (4 bytes)

The number of free fields in the fiscal memory, reserved for saving information from the daily report.

Returns

NSDictionary

• KeyValue - @"logicalFiscalRecordsCount" - The number of logical locations for fiscal entries (4 bytes)

1.1.2.137 command69Variant0Version0ReportTypeOption:error:()

- (NSDictionary ∗) command69Variant0Version0ReportTypeOption:

(NSString ∗) reportTypeOption

error:(NSError ∗∗) error

45h(69) DAILY FINANCIAL REPORT

• Data field:

1. reportTypeOption

• Response:

1. fiscalRecordNumber

2. totalSumForTheDay

3. totalSumInTaxGroupA,

4. totalSumInTaxGroupB,

5. totalSumInTaxGroupC,

6. totalSumInTaxGroupD,

7. totalSumInTaxGroupE,

8. totalSumInSpecialTax

• reportTypeOption Parameter controlling the type of generated report.

1. '0' A Z-report is printed. The printout ends with inscriptions "NON-FISCAL RECEIPT" if the printer is not
fiscalised.

Generated by Doxygen



172 Class Documentation

2. '2' A X-report is generated, i.e., no entry into the fiscal memory is made and no closures are performed.
The printout ends with inscription "NON-FISCAL RECEIPT". The same actions may be generated
directly from the printer if during switching on the "FEED" button is hold for 2 to 4 seconds.

3. N The presence of this symbol at the end of the data cancels the option to clear the data accumulated
on the operators during a Z-report.

4. A The presence of this symbol at the end of the data cancels the option to clear the data about sold
article quantities during a Z-report.

• fiscalRecordNumber Fiscal closure (Daily report) number - 4 bytes.

• totalSumForTheDay The sum of all sales for the day - 12 bytes with a sign.

• totalSumInTaxGroupX The totals under all tax categories - A, B, C, D and E - 12 bytes with a sign.

• totalSumInSpecialTax Special tax sum (12 bytes with sign).

The command with option '0' (Z-report) must be executed immediately after printing and deleting the electronic
journal. If there is information in the journal, the command is not permitted.

Parameters

reportTypeOption - Parameter controlling the type of generated report.

• '0' A Z-report is printed. The printout ends with inscriptions "NON-FISCAL
RECEIPT" if the printer is not fiscalised.

• '2' A X-report is generated, i.e., no entry into the fiscal memory is made and no
closures are performed. The printout ends with inscription "NON-FISCAL
RECEIPT". The same actions may be generated directly from the printer if during
switching on the <FEED> button is hold for 2 to 4 seconds.

• N The presence of this symbol at the end of the data cancels the option to clear the
data accumulated on the operators during a Z-report.

• A The presence of this symbol at the end of the data cancels the option to clear the
data about sold article quantities during a Z-report.

error pointer to NSError object, where error information is stored in case function fails. You can
pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"fiscalRecordNumber" - Fiscal closure (Daily report) number - 4 bytes.

• KeyValue - @"totalSumForTheDay" - The sum of all sales for the day - 12 bytes with a sign.

• KeyValue - @"totalSumInTaxGroupA" - The totals under all tax categories - A, B, C, D and E - 12 bytes
with a sign.

• KeyValue - @"totalSumInTaxGroupB" - The totals under all tax categories - A, B, C, D and E - 12 bytes
with a sign.

• KeyValue - @"totalSumInTaxGroupC" - The totals under all tax categories - A, B, C, D and E - 12 bytes
with a sign.

• KeyValue - @"totalSumInTaxGroupD" - The totals under all tax categories - A, B, C, D and E - 12 bytes
with a sign.

• KeyValue - @"totalSumInTaxGroupE" - The totals under all tax categories - A, B, C, D and E - 12 bytes
with a sign.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 173

• KeyValue - @"totalSumInSpecialTax" - TotF The total under tax category - 12 bytes with a sign.

1.1.2.138 command70Variant0Version0AmountInOut:error:()

- (NSDictionary ∗) command70Variant0Version0AmountInOut:

(NSString ∗) amountInOut

error:(NSError ∗∗) error

46h(70) INTERNAL DEBITING AND CREDITING (servICE In and Out)

• Data field:

1. amountInOut

• Response:

1. exitCode

2. sumInCashRegister

3. totalForAllInputs

4. totalForOutputs

• amountInOut The sum, which will be registered (up to 9 bytes). Depending on the sign of the digit, this sum
is interpreted either as credit or debit (serveIn or serveOut).

• exitCode:

1. 'P' The order has been completed. If the ordered sum is not 0, the printer will print an interior receipt for
registering the operation.

2. 'F' The order has been canceled. This happens if:

(a) - the cash sum available is less than the ordered interior credit (serveIn),

(b) - there is an opened fiscal and non-fiscal receipt.

• sumInCashRegister Available cash. Apart from this command, the sum grows after each payment in cash.

• totalForAllInputs The sum from all commands "Interior credit"

• totalForOutputs The sum from all commands "Interior debit"

Changes the content of the cash availability register. Depending on the sign of the sum in question, it is accumulated
in the register for interior debit-credit. The information is not saved in the fiscal memory of device and is accessible
until the performance of the daily closure. It is printed out at the command 69 (45h) and at the generation of the
daily report without closure from the printer itself. At successful completion of this command, the drawer "kick-out"
function is automatically activated.

Parameters

amountInOut - The sum, which will be registered (up to 9 bytes). Depending on the sign of the digit, this sum
is interpreted either as credit or debit (serveIn or serveOut).

error pointer to NSError object, where error information is stored in case function fails. You can pass
nil if you don't want that information

Generated by Doxygen



174 Class Documentation

Returns

NSDictionary

• KeyValue - @"exitCode" - 'P' The order has been completed. If the ordered sum is not 0, the printer will
print an interior receipt for registering the operation. 'F' The order has been canceled. This happens if:

1. - the cash sum available is less than the ordered interior credit (serveIn),
2. - there is an opened fiscal and non-fiscal receipt.

• KeyValue - @"sumInCashRegister" - Available cash. Apart from this command, the sum grows after
each payment in cash.

• KeyValue - @"totalForAllInputs" - The sum from all commands "Interior credit"

• KeyValue - @"totalForOutputs" - The sum from all commands "Interior debit"

1.1.2.139 command70Variant0Version1AndReturnError:()

- (NSDictionary ∗) command70Variant0Version1AndReturnError:

(NSError ∗∗) error

46h(70) INTERNAL DEBITING AND CREDITING (read only)

• Data field: None

• Response:

1. exitCode

2. sumInCashRegister

3. totalForAllInputs

4. totalForOutputs

• amountInOut The sum, which will be registered (up to 9 bytes). Depending on the sign of the digit, this sum
is interpreted either as credit or debit (serveIn or serveOut).

• exitCode:

1. 'P' The order has been completed. If the ordered sum is not 0, the printer will print an interior receipt for
registering the operation.

2. 'F' The order has been canceled. This happens if:

(a) - the cash sum available is less than the ordered interior credit (serveIn),
(b) - there is an opened fiscal and non-fiscal receipt.

• sumInCashRegister Available cash. Apart from this command, the sum grows after each payment in cash.

• totalForAllInputs The sum from all commands "Interior credit"

• totalForOutputs The sum from all commands "Interior debit"

Changes the content of the cash availability register. Depending on the sign of the sum in question, it is accumulated
in the register for interior debit-credit. The information is not saved in the fiscal memory of device and is accessible
until the performance of the daily closure. It is printed out at the command 69 (45h) and at the generation of the
daily report without closure from the printer itself. At successful completion of this command, the drawer "kick-out"
function is automatically activated.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 175

Returns

NSDictionary

• KeyValue - @"exitCode" - 'P' The order has been completed. If the ordered sum is not 0, the printer will
print an interior receipt for registering the operation. 'F' The order has been canceled. This happens if:

1. - the cash sum available is less than the ordered interior credit (serveIn),

2. - there is an opened fiscal and non-fiscal receipt.

• KeyValue - @"sumInCashRegister" - Available cash. Apart from this command, the sum grows after
each payment in cash.

• KeyValue - @"totalForAllInputs" - The sum from all commands "Interior credit"

• KeyValue - @"totalForOutputs" - The sum from all commands "Interior debit"

1.1.2.140 command71Variant0Version0AndReturnError:()

- (bool) command71Variant0Version0AndReturnError:

(NSError ∗∗) error

47h(71) PRINTING DIAGNOSTIC INFORMATION

• Data field: No data

• Response: None

The command initiates the generation of an interior receipt containing diagnostic information as follows:

• - Prints the date and version of the employed software,

• - Prints the control sum of the employed firmware,

• - Prints the serial port's band rate,

• - Prints out the status of memory switches,

• - Prints emergency time after power supply cut-off,

• - Prints the number, date and hour of the last reset of the RAM (if there is such),

• - Prints the current temperature of the two printer heads,

• - Prints the overall number of fields in the fiscal memory and the number of the free fields,

• - Prints the current date and hour.

The command will not be executed when there is an open receipt in progress or when the paper roll has finished. It
may also be activated by pressing the "FEED" button while power on for less than 2 seconds.

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



176 Class Documentation

1.1.2.141 command73Variant0Version0StartRecordNumber:endRecordNumber:error:()

- (bool) command73Variant0Version0StartRecordNumber:

(NSString ∗) startRecordNumber

endRecordNumber:(NSString ∗) endRecordNumber

error:(NSError ∗∗) error

49H (73) DETAILED FISCAL MEMORY REPORT BY CLOSURE NUMBER

• Data field:

1. startRecordNumber

2. endRecordNumber

• Response: None

• startRecordNumber The number of the starting fiscal entry - 4 bytes

• endRecordNumber The number of the ending fiscal entry - 4 bytes

The command leads to printing of a detailed report of the fiscal memory from one selected number to another.

Parameters

startRecordNumber - The number of the starting fiscal entry - 4 bytes

endRecordNumber - The number of the ending fiscal entry - 4 bytes

error pointer to NSError object, where error information is stored in case function fails. You
can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.142 command74Variant0Version0AndReturnError:()

- (NSDictionary ∗) command74Variant0Version0AndReturnError:

(NSError ∗∗) error

4Ah(74) READING THE STATUS BYTES

• Data field: None

• Response:

1. statusByte0 Status byte 0

2. statusByte1 Status byte 1

3. statusByte2 Status byte 2

4. statusByte3 Status byte 3

5. statusByte4 Status byte 4

6. statusByte5 Status byte 5

All printer buffers must be printed out first.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 177

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"statusByte0" - statusByte0

• KeyValue - @"statusByte1" - statusByte1

• KeyValue - @"statusByte2" - statusByte2

• KeyValue - @"statusByte3" - statusByte3

• KeyValue - @"statusByte4" - statusByte4

• KeyValue - @"statusByte5" - statusByte5

1.1.2.143 command74Variant1Version0AndReturnError:()

- (NSDictionary ∗) command74Variant1Version0AndReturnError:

(NSError ∗∗) error

4Ah(74) READING THE STATUS BYTES

• Data field: None

• Response:

1. statusByte0 Status byte 0

2. statusByte1 Status byte 1

3. statusByte2 Status byte 2

4. statusByte3 Status byte 3

5. statusByte4 Status byte 4

6. statusByte5 Status byte 5

The status is returned immediately (default).

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"statusByte0" - statusByte0

• KeyValue - @"statusByte1" - statusByte1

• KeyValue - @"statusByte2" - statusByte2

Generated by Doxygen



178 Class Documentation

• KeyValue - @"statusByte3" - statusByte3

• KeyValue - @"statusByte4" - statusByte4

• KeyValue - @"statusByte5" - statusByte5

1.1.2.144 command76Variant0Version0AndReturnError:()

- (NSDictionary ∗) command76Variant0Version0AndReturnError:

(NSError ∗∗) error

4Ch(76) STATUS OF THE FISCAL TRANSACTION

• Data field: None

• Repsonse:

1. receiptIsOpened

2. countOfRegisteredSales

3. lastFiscalReceiptAmount

4. lastFiscalReceiptTender

The command will return the information on the current state of the sum due for payment by client.

• receiptIsOpened One byte:

1. '1' - if a fiscal or a non-fiscal receipt has been opened (which can be understood from the status bytes);

2. '0' - if there is no opened receipt;

• countOfRegisteredSales The number of sales registered on the current or last fiscal receipt - 4 bytes.

• lastFiscalReceiptAmount The sum from the last fiscal receipt - 9 bytes with a sign.

• lastFiscalReceiptTender The sum tendered against the current or the last receipt - 9 bytes with a sign.

The command supports the PC application's ability to monitor the status and, if needed, to restore and complete an
already started fiscal operation, which has been interrupted on emergency or out of time - for example, as a result
of a power failure.

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"receiptIsOpened" - One byte, which is

• '1' - if a fiscal or a non-fiscal receipt has been opened (which can be understood from the status bytes);

Generated by Doxygen



1.1 FMP10_ROU Class Reference 179

• '0' - if there is no opened receipt;

• KeyValue - @"countOfRegisteredSales" - The number of sales registered on the current or last fiscal receipt
- 4 bytes.

• KeyValue - @"lastFiscalReceiptAmount" - The sum from the last fiscal receipt - 9 bytes with a sign.

• KeyValue - @"lastFiscalReceiptTender" - The sum tendered against the current or the last receipt - 9 bytes
with a sign.

1.1.2.145 command79Variant0Version0StartDate:endDate:error:()

- (bool) command79Variant0Version0StartDate:

(NSString ∗) startDate

endDate:(NSString ∗) endDate

error:(NSError ∗∗) error

4Fh(79) SHORT FISCAL MEMORY REPORT BY CLOSURE DATE

• Data field:

1. startDate

2. endDate

• Response: None

• startDate Starting date - 6 bytes (DDMMYY)

• endDate End date - 6 bytes (DDMMYY)

The command generates printing out of a short periodic financial report.

Parameters

startDate - Starting date - 6 bytes (DDMMYY)

endDate - End date - 6 bytes (DDMMYY)

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.146 command80Variant0Version0SoundData:error:()

- (bool) command80Variant0Version0SoundData:

(NSString ∗) soundData

error:(NSError ∗∗) error

Generated by Doxygen



180 Class Documentation

50h(80) SOUND SIGNAL

• Data field:

1. soundData

• Response: None

If the input data looks like: <Hz>,<mSec> where Hz and mSec are integer numbers, then a sound signal with
frequency Hz (100-5000) and duration mSec milliseconds (50-2000) is generated. In all other cases data must be in
format, similar to the one used for writing notes and can be of any length up to 218 bytes. The first invalid character
cancels the command. SoundData format is a sequence of the following subcommands:

• Notes of the scale: One latine letter with value from 'A' to 'G'.

1. 'C' - Do

2. 'D' - Re

3. 'E' - Mi

4. 'F' - Fa

5. 'G' - Sol

6. 'A' - La

7. 'B' - Si

8. If immediately after the note comes character '#', then the note is higher in pitch by a semitone (sharp).
If immediately after the note comes character '&', then the note is lower in pitch by a semitone (flat).

• Pause: Character space (ASCII 20h).

• After a note or pause there can be one or a few bytes, which specify the duration. Valid are characters from
'0' to '5', they have the following meaning:

1. '0' basic duration of a note/pause

2. '1' basic duration ∗ 2

3. '2' basic duration ∗ 4

4. '3' basic duration ∗ 8

5. '4' basic duration ∗ 16

6. '5' basic duration ∗ 32

7. If there are a few durations one after another they are summed up.

• Going to higher scale: character '+'.

• Going to lower scale: character '-'.

• Specifying tempo: character '∧', followed by a number. The number specifies the percentage: duration of
notes and intervals to basic duration. Values:

1. '1' 200 %

2. '2' 175 %

3. '3' 140 %

4. '4' 120 %

5. '5' 100 %

6. '6' 80 %

7. '7' 60 %

8. '8' 50 %

9. '9' 40 %

• Return to scale 1 (it is default). Character '@'. Tone 'La' in it is 440 Hz.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 181

Parameters

soundData -

If the input data looks like: <Hz>,<mSec> where Hz and mSec are integer numbers, then a sound signal with
frequency Hz (100-5000) and duration mSec milliseconds (50-2000) is generated. In all other cases data must be in
format, similar to the one used for writing notes and can be of any length up to 218 bytes. The first invalid character
cancels the command. SoundData format is a sequence of the following subcommands:

• Notes of the scale: One latine letter with value from 'A' to 'G'.

1. 'C' - Do

2. 'D' - Re

3. 'E' - Mi

4. 'F' - Fa

5. 'G' - Sol

6. 'A' - La

7. 'B' - Si

8. If immediately after the note comes character '#', then the note is higher in pitch by a semitone (sharp).
If immediately after the note comes character '&', then the note is lower in pitch by a semitone (flat).

• Pause: Character space (ASCII 20h).

• After a note or pause there can be one or a few bytes, which specify the duration. Valid are characters from
'0' to '5', they have the following meaning:

1. '0' basic duration of a note/pause

2. '1' basic duration ∗ 2

3. '2' basic duration ∗ 4

4. '3' basic duration ∗ 8

5. '4' basic duration ∗ 16

6. '5' basic duration ∗ 32

7. If there are a few durations one after another they are summed up.

• Going to higher scale: character '+'.

• Going to lower scale: character '-'.

• Specifying tempo: character '∧', followed by a number. The number specifies the percentage: duration of
notes and intervals to basic duration. Values:

1. '1' 200 %

2. '2' 175 %

3. '3' 140 %

4. '4' 120 %

5. '5' 100 %

6. '6' 80 %

7. '7' 60 %

8. '8' 50 %

9. '9' 40 %

• Return to scale 1 (it is default). Character '@'. Tone 'La' in it is 440 Hz.

Generated by Doxygen



182 Class Documentation

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.147 command83Variant0Version0InputMultiplier:inputDecimals:inputCurrency:inputEnabledTaxesArray:inputTaxGroup←↩

A:inputTaxGroupB:inputTaxGroupC:inputTaxGroupD:error:()

- (NSDictionary ∗) command83Variant0Version0InputMultiplier:

(NSString ∗) inputMultiplier

inputDecimals:(NSString ∗) inputDecimals

inputCurrency:(NSString ∗) inputCurrency

inputEnabledTaxesArray:(NSString ∗) inputEnabledTaxesArray

inputTaxGroupA:(NSString ∗) inputTaxGroupA

inputTaxGroupB:(NSString ∗) inputTaxGroupB

inputTaxGroupC:(NSString ∗) inputTaxGroupC

inputTaxGroupD:(NSString ∗) inputTaxGroupD

error:(NSError ∗∗) error

53h(83) SETTING THE MULTIPLIER, DECIMALS, CURRENCY NAME AND DISABLED TAXES

• Data fields:

1. inputMultiplier

2. inputDecimals

3. inputCurrency

4. inputEnabledTaxesArray

5. inputTaxGroupA

6. inputTaxGroupB

7. inputTaxGroupC

8. inputTaxGroupD

• Response:

1. outputMultiplier

2. outputDecimals

3. outputCurrency

4. outputEnabledTaxesArray

5. outputTaxGroupA

6. outputTaxGroupB

7. outputTaxGroupC

8. outputTaxGroupD

Generated by Doxygen



1.1 FMP10_ROU Class Reference 183

• (input/output)Multiplier A multiplier between 0 and 3 which shows the degree of 10 before multiplying it times
the input or output value (at present deactivated and out of use).

• (input/output)Decimals One byte with a value 0 or 2 and shows the exact place of the decimal point.

• (input/output)Currency The currency name. Up to 6 bytes.

• (input/output)EnabledTaxesArray 4 bytes with value '0' or '1', corresponding to VAT groups 'A', 'B', 'C', 'D'. '0'
means disabled VAT group, '1' - enabled VAT group.

• (input/output)TaxGroupX The VAT rate for the corresponding VAT group in % with up to 2 decimals (0.00 to
99.00).

If nothing is entered in the data field, the FP returns the currently valid values. Even when only one of the parameters
must be changed, the rest must be entered too. The fiscal memory has a fixed capacity for a set number of entries,
and for that reason the command can be performed not more than 20 times after the fiscalisation. Before the
fiscalisation the data are hold in RAM only and may be changed without limitations. The command may be executed
only before the first fiscal receipt for the day.

Parameters

inputMultiplier - A multiplier between 0 and 3 which shows the degree of 10 before multiplying it
times the input or output value (at present deactivated and out of use).

inputDecimals - One byte with a value 0 or 2 and shows the exact place of the decimal point.

inputCurrency - The currency name. Up to 6 bytes.

inputEnabledTaxesArray - 4 bytes with value '0' or '1', corresponding to VAT groups 'A', 'B', 'C', 'D'. '0' means
disabled VAT group, '1' - enabled VAT group.

inputTaxGroupA - The VAT rate for the corresponding VAT group in % with up to 2 decimals (0.00 to
99.00).

inputTaxGroupB - The VAT rate for the corresponding VAT group in % with up to 2 decimals (0.00 to
99.00).

inputTaxGroupC - The VAT rate for the corresponding VAT group in % with up to 2 decimals (0.00 to
99.00).

inputTaxGroupD - The VAT rate for the corresponding VAT group in % with up to 2 decimals (0.00 to
99.00).

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"outputMultiplier" - A multiplier between 0 and 3 which shows the degree of 10 before
multiplying it times the input or output value (at present deactivated and out of use).

• KeyValue - @"outputDecimals" - One byte with a value 0 or 2 and shows the exact place of the decimal
point.

• KeyValue - @"outputCurrency" - The currency name. Up to 6 bytes.

• KeyValue - @"outputEnabledTaxesArray" - 4 bytes with value '0' or '1', corresponding to VAT groups 'A',
'B', 'C', 'D'. '0' means disabled VAT group, '1' - enabled VAT group.

• KeyValue - @"outputTaxGroupA" - The VAT rate for the corresponding VAT group in % with up to 2
decimals (0.00 to 99.00).

• KeyValue - @"outputTaxGroupB" - The VAT rate for the corresponding VAT group in % with up to 2
decimals (0.00 to 99.00).

• KeyValue - @"outputTaxGroupC" - The VAT rate for the corresponding VAT group in % with up to 2
decimals (0.00 to 99.00).

Generated by Doxygen



184 Class Documentation

• KeyValue - @"outputTaxGroupD" - The VAT rate for the corresponding VAT group in % with up to 2
decimals (0.00 to 99.00).

1.1.2.148 command83Variant1Version0AndReturnError:()

- (NSDictionary ∗) command83Variant1Version0AndReturnError:

(NSError ∗∗) error

53h(83) SETTING THE MULTIPLIER, DECIMALS, CURRENCY NAME AND DISABLED TAXES

• Data fields: None

• Response:

1. outputMultiplier

2. outputDecimals

3. outputCurrency

4. outputEnabledTaxesArray

5. outputTaxGroupA

6. outputTaxGroupB

7. outputTaxGroupC

8. outputTaxGroupD

• (input/output)Multiplier A multiplier between 0 and 3 which shows the degree of 10 before multiplying it times
the input or output value (at present deactivated and out of use).

• (input/output)Decimals One byte with a value 0 or 2 and shows the exact place of the decimal point.

• (input/output)Currency The currency name. Up to 6 bytes.

• (input/output)EnabledTaxesArray 4 bytes with value '0' or '1', corresponding to VAT groups 'A', 'B', 'C', 'D'. '0'
means disabled VAT group, '1' - enabled VAT group.

• (input/output)TaxGroupX The VAT rate for the corresponding VAT group in % with up to 2 decimals (0.00 to
99.00).

If nothing is entered in the data field, the FP returns the currently valid values. Even when only one of the parameters
must be changed, the rest must be entered too. The fiscal memory has a fixed capacity for a set number of entries,
and for that reason the command can be performed not more than 20 times after the fiscalisation. Before the
fiscalisation the data are hold in RAM only and may be changed without limitations. The command may be executed
only before the first fiscal receipt for the day.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 185

Returns

NSDictionary

• KeyValue - @"outputMultiplier" - A multiplier between 0 and 3 which shows the degree of 10 before
multiplying it times the input or output value (at present deactivated and out of use).

• KeyValue - @"outputDecimals" - One byte with a value 0 or 2 and shows the exact place of the decimal
point.

• KeyValue - @"outputCurrency" - The currency name. Up to 6 bytes.

• KeyValue - @"outputEnabledTaxesArray" - 4 bytes with value '0' or '1', corresponding to VAT groups 'A',
'B', 'C', 'D'. '0' means disabled VAT group, '1' - enabled VAT group.

• KeyValue - @"outputTaxA" - The VAT rate for the corresponding VAT group in % with up to 2 decimals
(0.00 to 99.00).

• KeyValue - @"outputTaxB" - The VAT rate for the corresponding VAT group in % with up to 2 decimals
(0.00 to 99.00).

• KeyValue - @"outputTaxC" - The VAT rate for the corresponding VAT group in % with up to 2 decimals
(0.00 to 99.00).

• KeyValue - @"outputTaxD" - The VAT rate for the corresponding VAT group in % with up to 2 decimals
(0.00 to 99.00).

1.1.2.149 command84Variant0Version0BarcodeType:barcodeData:error:()

- (bool) command84Variant0Version0BarcodeType:

(NSString ∗) barcodeType

barcodeData:(NSString ∗) barcodeData

error:(NSError ∗∗) error

54h(84) PRINTING A BAR CODE

The command prints a bar code. It is permitted in an open fiscal or non-fiscal receipt. Bar code is printed centered.
Note: Below the bar code is printed the information as text.

• Data field:

1. barcodeType

2. barcodeData

• Response: None

• barcodeType Bar code type. One byte with value:

1. '1' EAN8. Data contain only digits and is 7 bytes long. Check sum is calculated by the printer.

2. '2' EAN13. Data contain only digits and is 12 bytes long. Check sum is calculated by the printer.

3. '3' Code 128. Data contain symbols with ASCII from 32 to 127. Length is from 9 to 18 symbols (depends
on the contents - maximum length is possible if all symbols are digits). Check sum is calculated by the
printer.

4. '4' ITF (Interleaved 2 of 5). Data contain only digits.

5. '5' ITF (Interleaved 2 of 5). Data contain only digits. Check sum is calculated and printed by the printer.

• barcodeData

Generated by Doxygen



186 Class Documentation

1. - EAN8 bar code. Data contains only digits and is 7 bytes long. The check sum is automatically
calculated and printed.

2. - EAN13 bar code. Data contains only digits and is 12 bytes long. The check sum is automatically
calculated and printed.

3. - Code128 bar code. Data contains symbols with ASCII codes between 32 and 127. Data length is
between 16 and 32 symbols

4. (depends on the content - the maximum length is if all symbol are digits). The check sum is automatically
calculated and printed.

5. - Interleaved 2 of 5 bar code. Data contains only digits and is up to 28 bytes long. No check sum is
calculated and printed.

6. - Interleaved 2 of 5 bar code. Data contains only digits and is up to 27 bytes long. The check sum is
automatically calculated

7. and printed.

If data length is wrong or invalid characters are used, the "Syntax error" status is set and nothing is printed. Bar
code length is ser using command 43.

Parameters

barcodeType - Bar code type. One byte with value:

• '1' EAN8. Data contain only digits and is 7 bytes long. Check sum is calculated by the
printer.

• '2' EAN13. Data contain only digits and is 12 bytes long. Check sum is calculated by the
printer.

• '3' Code 128. Data contain symbols with ASCII from 32 to 127. Length is from 9 to 18
symbols (depends on the contents - maximum length is possible if all symbols are digits).
Check sum is calculated by the printer.

• '4' ITF (Interleaved 2 of 5). Data contain only digits.

• '5' ITF (Interleaved 2 of 5). Data contain only digits. Check sum is calculated and printed
by the printer.

barcodeData - BC_Data

• - EAN8 bar code. Data contains only digits and is 7 bytes long. The check sum is automatically calculated
and printed.

• - EAN13 bar code. Data contains only digits and is 12 bytes long. The check sum is automatically calculated
and printed.

• - Code128 bar code. Data contains symbols with ASCII codes between 32 and 127. Data length is between
16 and 32 symbols

• (depends on the content - the maximum length is if all symbol are digits). The check sum is automatically
calculated and printed.

• - Interleaved 2 of 5 bar code. Data contains only digits and is up to 28 bytes long. No check sum is calculated
and printed.

• - Interleaved 2 of 5 bar code. Data contains only digits and is up to 27 bytes long. The check sum is
automatically calculated

• and printed.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 187

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.150 command84Variant0Version1BarcodeType:barcodeData:error:()

- (bool) command84Variant0Version1BarcodeType:

(NSString ∗) barcodeType

barcodeData:(NSString ∗) barcodeData

error:(NSError ∗∗) error

54h(84) PRINTING A BAR CODE

The command prints a bar code. It is permitted in an open fiscal or non-fiscal receipt. Bar code is printed centered.

• Data field:

1. barcodeType

2. barcodeData

• Response: None

• barcodeType Bar code type. One byte with value:

1. '1' EAN8. Data contain only digits and is 7 bytes long. Check sum is calculated by the printer.

2. '2' EAN13. Data contain only digits and is 12 bytes long. Check sum is calculated by the printer.

3. '3' Code 128. Data contain symbols with ASCII from 32 to 127. Length is from 9 to 18 symbols (depends
on the contents - maximum length is possible if all symbols are digits). Check sum is calculated by the
printer.

4. '4' ITF (Interleaved 2 of 5). Data contain only digits.

5. '5' ITF (Interleaved 2 of 5). Data contain only digits. Check sum is calculated and printed by the printer.

• barcodeData

1. - EAN8 bar code. Data contains only digits and is 7 bytes long. The check sum is automatically
calculated and printed.

2. - EAN13 bar code. Data contains only digits and is 12 bytes long. The check sum is automatically
calculated and printed.

3. - Code128 bar code. Data contains symbols with ASCII codes between 32 and 127. Data length is
between 16 and 32 symbols

4. (depends on the content - the maximum length is if all symbol are digits). The check sum is automatically
calculated and printed.

5. - Interleaved 2 of 5 bar code. Data contains only digits and is up to 28 bytes long. No check sum is
calculated and printed.

6. - Interleaved 2 of 5 bar code. Data contains only digits and is up to 27 bytes long. The check sum is
automatically calculated

7. and printed.

If data length is wrong or invalid characters are used, the "Syntax error" status is set and nothing is printed. Bar
code length is ser using command 43.

Generated by Doxygen



188 Class Documentation

Parameters

barcodeType - Bar code type. One byte with value:

• '1' EAN8. Data contain only digits and is 7 bytes long. Check sum is calculated by the
printer.

• '2' EAN13. Data contain only digits and is 12 bytes long. Check sum is calculated by the
printer.

• '3' Code 128. Data contain symbols with ASCII from 32 to 127. Length is from 9 to 18
symbols (depends on the contents - maximum length is possible if all symbols are digits).
Check sum is calculated by the printer.

• '4' ITF (Interleaved 2 of 5). Data contain only digits.

• '5' ITF (Interleaved 2 of 5). Data contain only digits. Check sum is calculated and printed
by the printer.

barcodeData - BC_Data

• - EAN8 bar code. Data contains only digits and is 7 bytes long. The check sum is automatically calculated
and printed.

• - EAN13 bar code. Data contains only digits and is 12 bytes long. The check sum is automatically calculated
and printed.

• - Code128 bar code. Data contains symbols with ASCII codes between 32 and 127. Data length is between
16 and 32 symbols

• (depends on the content - the maximum length is if all symbol are digits). The check sum is automatically
calculated and printed.

• - Interleaved 2 of 5 bar code. Data contains only digits and is up to 28 bytes long. No check sum is calculated
and printed.

• - Interleaved 2 of 5 bar code. Data contains only digits and is up to 27 bytes long. The check sum is
automatically calculated

• and printed.

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.151 command85Variant0Version0AdditionalPaymentTypeOption:inputAdditionalPaymentName:error:()

- (NSDictionary ∗) command85Variant0Version0AdditionalPaymentTypeOption:

(NSString ∗) additionalPaymentTypeOption

Generated by Doxygen



1.1 FMP10_ROU Class Reference 189

inputAdditionalPaymentName:(NSString ∗) inputAdditionalPaymentName

error:(NSError ∗∗) error

55H(85) DIFINE ADDITIONAL PAYMENT TYPES NAME

• Data field:

1. additionalPaymentTypeOption:

(a) 'I' Additional payment 1

(b) 'J' Additional payment 2

(c) 'K' Additional payment 3

(d) 'L' Additional payment 4

2. inputAdditionalPaymentName: Comment text of the payment. Up to 31 bytes. If not present, the current
name is returned.

• Response:

1. outputText:

(a) 'P' No error.

(b) 'F' Name longer than 31 bytes.

The command defines the comment text, printed before the additional (programmable) payments. The command is
not permitted after the first fiscal receipt for the day.

Parameters

additionalPaymentTypeOption - - 'I' Additional payment 1

• 'J' Additional payment 2

• 'K' Additional payment 3

• 'L' Additional payment 4

inputAdditionalPaymentName - Comment text of the payment. Up to 31 bytes. If not present, the current
name is returned.

error pointer to NSError object, where error information is stored in case function
fails. You can pass nil if you don't want that information

Returns

NSDictionary

• KeyValue - @"outputText" - - 'P' No error.

• 'F' Name longer than 31 bytes.

1.1.2.152 command85Variant0Version1AdditionalPaymentTypeOption:error:()

- (NSDictionary ∗) command85Variant0Version1AdditionalPaymentTypeOption:

(NSString ∗) additionalPaymentTypeOption

error:(NSError ∗∗) error

55H(85) DIFINE ADDITIONAL PAYMENT TYPES NAME

Generated by Doxygen



190 Class Documentation

• Data field:

1. additionalPaymentTypeOption:

(a) 'I' Additional payment 1

(b) 'J' Additional payment 2

(c) 'K' Additional payment 3

(d) 'L' Additional payment 4

• Response:

1. outputAdditionalPaymentName: Comment text of the payment. Up to 31 bytes. If not present, the
current name is returned.

Parameters

additionalPaymentTypeOption -

• 'I' Additional payment 1

• 'J' Additional payment 2

• 'K' Additional payment 3

• 'L' Additional payment 4

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"outputAdditionalPaymentName" - Comment text of the payment. Up to 31 bytes. If not
present, the current name is returned.

1.1.2.153 command86Variant0Version0AndReturnError:()

- (NSDictionary ∗) command86Variant0Version0AndReturnError:

(NSError ∗∗) error

56H(86) GET LATEST FISCAL MEMORY RECORD DATE

• Data field:

1. None

• Response:

1. lastFiscalMemoryDate Date of last (latest) record in the fiscal memory in format:DD-MM-YYYY

Generated by Doxygen



1.1 FMP10_ROU Class Reference 191

Returns

NSDictionary

• KeyValue - @"lastFiscalMemoryDate" - Date of last (latest) record in the fiscal memory in format:DD-←↩

MM-YYYY

1.1.2.154 command87Variant0Version0AndReturnError:()

- (NSDictionary ∗) command87Variant0Version0AndReturnError:

(NSError ∗∗) error

57H(87) GET SHIFT LENGTH

• Data field: None

• Response: secondsAfterFirstReceipt

• secondsAfterFirstReceipt Seconds count after the first fiscal receipt for the day.

Opening fiscal receipt will be blocked if this count is > 86400 (24 hours).

Returns

NSDictionary

• KeyValue - @"secondsAfterFirstReceipt" - Seconds count after the first fiscal receipt for the day.

1.1.2.155 command90Variant0Version0AndReturnError:()

- (NSDictionary ∗) command90Variant0Version0AndReturnError:

(NSError ∗∗) error

5Ah(90) RETURNS DIAGONSTIC INFORMATION

• Data field:

1. None

• Response:

1. printerName Fiscal device name.

2. firmwareRevision The version of the software program - 4 bytes.

3. firmwareDate The date of the software program DDMmmYY - 7 bytes.

4. firmwareTime Hour of the software program HHMM - 4 bytes.

5. checkSum The EPROM control sum - a 4 bytes string in the hexadecimal code.

6. softwareSwitches The configuration switches from Sw1 to Sw8 - an 8 bytes string with '0' or '1'.

7. serialNumber The serial number - 8 bytes.

8. fiscalMemoryNumber Number of the fiscal module - 8 bytes.

Generated by Doxygen



192 Class Documentation

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"printerName" - Fiscal device name.

• KeyValue - @"firmwareRevision" - The version of the software program - 4 bytes.

• KeyValue - @"firmwareDate" - The date of the software program DDMmmYY - 7 bytes.

• KeyValue - @"firmwareTime" - Hour of the software program HHMM - 4 bytes.

• KeyValue - @"checkSum" - The EPROM control sum - a 4 bytes string in the hexadecimal code.

• KeyValue - @"softwareSwitches" - The configuration switches from Sw1 to Sw8 - an 8 bytes string with
'0' or '1'.

• KeyValue - @"serialNumber" - The serial number - 8 bytes.

• KeyValue - @"fiscalMemoryNumber" - Number of the fiscal module - 8 bytes.

1.1.2.156 command90Variant0Version1AndReturnError:()

- (NSDictionary ∗) command90Variant0Version1AndReturnError:

(NSError ∗∗) error

5Ah(90) RETURNS DIAGONSTIC INFORMATION

• Data field:

1. None

• Response:

1. printerName Fiscal device name.

2. firmwareRevision The version of the software program - 4 bytes.

3. firmwareDate The date of the software program DDMmmYY - 7 bytes.

4. firmwareTime Hour of the software program HHMM - 4 bytes.

5. checkSum The EPROM control sum - a 4 bytes string in the hexadecimal code.

6. printerIsDiscoverable '0' or '1'. The printer is bluetooth discoverable if the value is 1.

7. serialNumber The serial number - 8 bytes.

8. fiscalMemoryNumber Number of the fiscal module - 8 bytes.

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Generated by Doxygen



1.1 FMP10_ROU Class Reference 193

Returns

NSDictionary

• KeyValue - @"printerName" - Fiscal device name.

• KeyValue - @"firmwareRevision" - The version of the software program - 4 bytes.

• KeyValue - @"firmwareDate" - The date of the software program DDMmmYY - 7 bytes.

• KeyValue - @"firmwareTime" - Hour of the software program HHMM - 4 bytes.

• KeyValue - @"checkSum" - The EPROM control sum - a 4 bytes string in the hexadecimal code.

• KeyValue - @"printerIsDiscoverable" - '0' or '1'. The printer is bluetooth discoverable if the value is 1

• KeyValue - @"serialNumber" - The serial number - 8 bytes.

• KeyValue - @"fiscalMemoryNumber" - Number of the fiscal module - 8 bytes.

1.1.2.157 command94Variant0Version0StartDate:endDate:error:()

- (bool) command94Variant0Version0StartDate:

(NSString ∗) startDate

endDate:(NSString ∗) endDate

error:(NSError ∗∗) error

5Eh(94) DETAILED FISCAL MEMORY REPORT BY CLOSURE DATE

• Data field:

1. startDate

2. endDate

• Response: None

• startDate Starting date of selected fiscal entry - 6 bytes DDMMYY

• endDate End date of the fiscal entry - 6 bytes DDMMYY

This command prints out a detailed financial report of the period between two selected dates.

Parameters

startDate - Starting date of selected fiscal entry - 6 bytes (DDMMYY)

endDate - End date of the fiscal entry - 6 bytes (DDMMYY)

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

Generated by Doxygen



194 Class Documentation

1.1.2.158 command95Variant0Version0StartFiscalRecordNumber:endFiscalRecordNumber:error:()

- (bool) command95Variant0Version0StartFiscalRecordNumber:

(NSString ∗) startFiscalRecordNumber

endFiscalRecordNumber:(NSString ∗) endFiscalRecordNumber

error:(NSError ∗∗) error

5Fh(95) SHORT FISCAL MEMORY REPORT BY CLOSURE NUMBER

• Data field:

1. startFiscalRecordNumber

2. endFiscalRecordNumber

• Response: None

• startFiscalRecordNumber Starting number of fiscal entry

• endFiscalRecordNumber End number of fiscal entry

The command starts the calculation and the printing of a short periodic financial report.

Parameters

startFiscalRecordNumber - Starting number of fiscal entry

endFiscalRecordNumber - End number of fiscal entry

error pointer to NSError object, where error information is stored in case function fails.
You can pass nil if you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.159 command97Variant0Version0AndReturnError:()

- (NSDictionary ∗) command97Variant0Version0AndReturnError:

(NSError ∗∗) error

61h(97) READING THE SET TAX RATES

• Data field: None

• Response:

1. taxGroupA

2. taxGroupB

3. taxGroupC

4. taxGroupD

Generated by Doxygen



1.1 FMP10_ROU Class Reference 195

• taxGroupA Current tax rate A

• taxGroupB Current tax rate B

• taxGroupC Current tax rate C

• taxGroupD Current tax rate D

Returns

NSDictionary

• KeyValue - @"taxGroupA" - Current tax rate A

• KeyValue - @"taxGroupB" - Current tax rate B

• KeyValue - @"taxGroupC" - Current tax rate C

• KeyValue - @"taxGroupD" - Current tax rate D

1.1.2.160 command99Variant0Version0AndReturnError:()

- (NSDictionary ∗) command99Variant0Version0AndReturnError:

(NSError ∗∗) error

63h(99) Reading the TAX REGISTRATION NUMBER

• Data field: None

• Response:

1. vatNumber

• vatNumber The VAT number as a text (up to 14 bytes).

Returns

NSDictionary

• KeyValue - @"vatNumber" - The VAT number as a text (up to 14 bytes).

1.1.2.161 connectWithStreams:outputStream:error:()

- (bool) connectWithStreams:

(NSInputStream ∗) inStream

outputStream:(NSOutputStream ∗) outStream

error:(NSError ∗∗) error

Connect to the fiscal device using streams.

Generated by Doxygen



196 Class Documentation

1.1.2.162 customCommand:data:error:()

- (NSString ∗) customCommand:

(int) cmd

data:(NSString ∗) data

error:(NSError ∗∗) error

1.1.2.163 diagnosticInfoGetAndReturnError:()

- (NSDictionary ∗) diagnosticInfoGetAndReturnError:

(NSError ∗∗) error

diagnosticInfoGetAndReturnError - RETURNS DIAGONSTIC INFORMATION

• Data field:

1. None

• Response:

1. printerName Fiscal device name.

2. firmwareRevision The version of the software program - 4 bytes.

3. firmwareDate The date of the software program DDMmmYY - 7 bytes.

4. firmwareTime Hour of the software program HHMM - 4 bytes.

5. checkSum The EPROM control sum - a 4 bytes string in the hexadecimal code.

6. softwareSwitches The configuration switches from Sw1 to Sw8 - an 8 bytes string with '0' or '1'.

7. serialNumber The serial number - 8 bytes.

8. fiscalMemoryNumber Number of the fiscal module - 8 bytes.

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"printerName" - Fiscal device name.

• KeyValue - @"firmwareRevision" - The version of the software program - 4 bytes.

• KeyValue - @"firmwareDate" - The date of the software program DDMmmYY - 7 bytes.

• KeyValue - @"firmwareTime" - Hour of the software program HHMM - 4 bytes.

• KeyValue - @"checkSum" - The EPROM control sum - a 4 bytes string in the hexadecimal code.

• KeyValue - @"softwareSwitches" - The configuration switches from Sw1 to Sw8 - an 8 bytes string with
'0' or '1'.

• KeyValue - @"serialNumber" - The serial number - 8 bytes.

• KeyValue - @"fiscalMemoryNumber" - Number of the fiscal module - 8 bytes.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 197

1.1.2.164 diagnosticInfoPrintAndReturnError:()

- (bool) diagnosticInfoPrintAndReturnError:

(NSError ∗∗) error

diagnosticInfoPrintAndReturnError - PRINTING DIAGNOSTIC INFORMATION

• Data field: No data

• Response: None

The command initiates the generation of an interior receipt containing diagnostic information as follows:

• - Prints the date and version of the employed software,

• - Prints the control sum of the employed firmware,

• - Prints the serial port's band rate,

• - Prints out the status of memory switches,

• - Prints emergency time after power supply cut-off,

• - Prints the number, date and hour of the last reset of the RAM (if there is such),

• - Prints the current temperature of the two printer heads,

• - Prints the overall number of fields in the fiscal memory and the number of the free fields,

• - Prints the current date and hour.

The command will not be executed when there is an open receipt in progress or when the paper roll has finished. It
may also be activated by pressing the "FEED" button while power on for less than 2 seconds.

Returns

TRUE upon success, FALSE otherwise

1.1.2.165 disconnect()

- (void) disconnect

Disconnects from the stream.

1.1.2.166 fiscalReceiptCloseAndReturnError:()

- (NSDictionary ∗) fiscalReceiptCloseAndReturnError:

(NSError ∗∗) error

Generated by Doxygen



198 Class Documentation

1.1.2.167 fiscalReceiptOpenAndReturnError:()

- (NSDictionary ∗) fiscalReceiptOpenAndReturnError:

(NSError ∗∗) error

1.1.2.168 fiscalReceiptPrintText:error:()

- (bool) fiscalReceiptPrintText:

(NSString ∗) text

error:(NSError ∗∗) error

1.1.2.169 fiscalReceiptSellAndReturnError:()

- (bool) fiscalReceiptSellAndReturnError:

(NSError ∗∗) error

1.1.2.170 fiscalReceiptSubtotalAndReturnError:()

- (NSDictionary ∗) fiscalReceiptSubtotalAndReturnError:

(NSError ∗∗) error

1.1.2.171 fiscalReceiptTotalAndReturnError:()

- (NSDictionary ∗) fiscalReceiptTotalAndReturnError:

(NSError ∗∗) error

1.1.2.172 getStatusBytesAndReturnError:()

- (NSDictionary ∗) getStatusBytesAndReturnError:

(NSError ∗∗) error

getStatusBytesAndReturnError - READING THE STATUS BYTES

• Data field: None

• Response:

1. statusByte0 Status byte 0

2. statusByte1 Status byte 1

3. statusByte2 Status byte 2

4. statusByte3 Status byte 3

5. statusByte4 Status byte 4

6. statusByte5 Status byte 5

The status is returned immediately (default).

Generated by Doxygen



1.1 FMP10_ROU Class Reference 199

Parameters

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if you
don't want that information

Returns

NSDictionary

• KeyValue - @"statusByte0" - statusByte0

• KeyValue - @"statusByte1" - statusByte1

• KeyValue - @"statusByte2" - statusByte2

• KeyValue - @"statusByte3" - statusByte3

• KeyValue - @"statusByte4" - statusByte4

• KeyValue - @"statusByte5" - statusByte5

1.1.2.173 nonFiscalReceiptCloseAndReturnError:()

- (NSDictionary ∗) nonFiscalReceiptCloseAndReturnError:

(NSError ∗∗) error

nonFiscalReceiptCloseAndReturnError - Closing a non-fiscal receipt

• Data field:

1. None

• Response:

1. Allreceipt The number of all issued receipts (fiscal and non-fiscal) from the last daily closure on (4 bytes).

The FP performs the following actions:

• Prints the footer

• The sequence number, date and hour of document are printed

• "NON-FISCAL RECEIPT" is printed in expanded style.

If the S1.1 flag is raised, the command is not executed because there is no opened non-fiscal receipt.

Returns

NSDictionary

• KeyValue - @"allReceipt" - The number of all issued receipts (fiscal and non-fiscal) from the last daily
closure on (4 bytes).

Generated by Doxygen



200 Class Documentation

1.1.2.174 nonFiscalReceiptOpenAndReturnError:()

- (NSDictionary ∗) nonFiscalReceiptOpenAndReturnError:

(NSError ∗∗) error

nonFiscalReceiptOpenAndReturnError - Opening a non-fiscal receipt.

• Data field:

1. None

• Response:

1. Allreceipt The number of all issued receipts (fiscal and non-fiscal) from the last daily closure on (4 bytes).

The FP performs the following actions:

• Prints the header

• Prints the tax registration number of the seller

• A response is received, which contains Allreceipt

The command cannot be executed, S1.1 is raised if.

• The fiscal memory has not been formatted

• There is an opened fiscal or non-fiscal receipt

• There is no paper

• The clock is not set

• The electronic journal is full

Returns

NSDictionary

• KeyValue - @"allReceipt" - The number of all issued receipts (fiscal and non-fiscal) from the last daily
closure on (4 bytes).

1.1.2.175 nonFiscalReceiptPrintText:error:()

- (bool) nonFiscalReceiptPrintText:

(NSString ∗) text

error:(NSError ∗∗) error

nonFiscalReceiptPrintText - PRINTING OF A FREE NON-FISCAL TEXT

• Data field:

1. inputText A text of 30 symbols (at most). The symbols after 30 are cut off.

• Response:

1. None

If S1.1 is raised, there is no non-fiscal receipt opened and the text is not printed.

Generated by Doxygen



1.1 FMP10_ROU Class Reference 201

Parameters

inputText - A text of 30 symbols (at most). The symbols after 30 are cut off.

error pointer to NSError object, where error information is stored in case function fails. You can pass nil if
you don't want that information

Returns

TRUE upon success, FALSE otherwise

1.1.2.176 removeDelegate:()

- (void) removeDelegate:

(id) newDelegate

Removes delegate, previously added with addDelegate.

Parameters

newDelegate the delegate that will be no longer be notified of Linea events

1.1.2.177 sharedInstance()

+ (id) sharedInstance

1.1.3 Property Documentation

1.1.3.1 delegate

- (id) delegate [read], [write], [atomic], [unsafeunretained]

Adds delegate to the class.

1.1.3.2 delegates

- (NSMutableArray∗) delegates [read], [atomic], [assign]

Provides a list of currently registered delegates.

Generated by Doxygen



202 Class Documentation

1.1.3.3 deviceConnected

- (bool) deviceConnected [read], [atomic], [assign]

1.1.3.4 infoBluetoothDiscoverable

- (bool) infoBluetoothDiscoverable [read], [atomic], [assign]

1.1.3.5 infoBuildNumberSDKVersion

- (int) infoBuildNumberSDKVersion [read], [atomic], [assign]

1.1.3.6 infoDisplayCodePage

- (int) infoDisplayCodePage [read], [atomic], [assign]

1.1.3.7 infoFirmwareDateTime

- (NSString∗) infoFirmwareDateTime [read], [atomic], [assign]

1.1.3.8 infoFirmwareRevision

- (NSString∗) infoFirmwareRevision [read], [atomic], [assign]

1.1.3.9 infoFiscalModuleNumber

- (NSString∗) infoFiscalModuleNumber [read], [atomic], [assign]

1.1.3.10 infoIOSANumber

- (NSString∗) infoIOSANumber [read], [atomic], [assign]

1.1.3.11 infoIPAddress

- (NSString∗) infoIPAddress [read], [atomic], [assign]

Generated by Doxygen



1.1 FMP10_ROU Class Reference 203

1.1.3.12 infoLastClassErrorCode

- (int) infoLastClassErrorCode [read], [atomic], [assign]

1.1.3.13 infoLastErrorText

- (NSString∗) infoLastErrorText [read], [atomic], [assign]

1.1.3.14 infoMACAddress

- (NSString∗) infoMACAddress [read], [atomic], [assign]

1.1.3.15 infoMajorNumberSDKVersion

- (int) infoMajorNumberSDKVersion [read], [atomic], [assign]

1.1.3.16 infoMandatoryEKLPrintBeforeZReport

- (bool) infoMandatoryEKLPrintBeforeZReport [read], [atomic], [assign]

1.1.3.17 infoMandatoryEKLSave

- (bool) infoMandatoryEKLSave [read], [atomic], [assign]

1.1.3.18 infoMandatoryMonthlyReport

- (bool) infoMandatoryMonthlyReport [read], [atomic], [assign]

1.1.3.19 infoMandatoryYearlyReport

- (bool) infoMandatoryYearlyReport [read], [atomic], [assign]

1.1.3.20 infoMandatoryZReportEndOfDay

- (bool) infoMandatoryZReportEndOfDay [read], [atomic], [assign]

Generated by Doxygen



204 Class Documentation

1.1.3.21 infoMaxDepartmentCount

- (int) infoMaxDepartmentCount [read], [atomic], [assign]

1.1.3.22 infoMaxFooterLinesCount

- (int) infoMaxFooterLinesCount [read], [atomic], [assign]

1.1.3.23 infoMaxHeaderLinesCount

- (int) infoMaxHeaderLinesCount [read], [atomic], [assign]

1.1.3.24 infoMaxItemsCount

- (int) infoMaxItemsCount [read], [atomic], [assign]

1.1.3.25 infoMaxLogoHigh

- (int) infoMaxLogoHigh [read], [atomic], [assign]

1.1.3.26 infoMaxLogoWidth

- (int) infoMaxLogoWidth [read], [atomic], [assign]

1.1.3.27 infoMaxSymbolCountInFiscalText

- (int) infoMaxSymbolCountInFiscalText [read], [atomic], [assign]

1.1.3.28 infoMaxSymbolCountInNonFiscalRotatedText

- (int) infoMaxSymbolCountInNonFiscalRotatedText [read], [atomic], [assign]

1.1.3.29 infoMaxSymbolCountInNonFiscalText

- (int) infoMaxSymbolCountInNonFiscalText [read], [atomic], [assign]

Generated by Doxygen



1.1 FMP10_ROU Class Reference 205

1.1.3.30 infoMaxSymbolCountInSellTextRow1

- (int) infoMaxSymbolCountInSellTextRow1 [read], [atomic], [assign]

1.1.3.31 infoMaxSymbolCountInSellTextRow2

- (int) infoMaxSymbolCountInSellTextRow2 [read], [atomic], [assign]

1.1.3.32 infoMaxTransactionsCountInFiscalReceipt

- (int) infoMaxTransactionsCountInFiscalReceipt [read], [atomic], [assign]

1.1.3.33 infoMinorNumberSDKVersion

- (int) infoMinorNumberSDKVersion [read], [atomic], [assign]

1.1.3.34 infoPrinterCodePage

- (int) infoPrinterCodePage [read], [atomic], [assign]

1.1.3.35 infoPrinterName

- (NSString∗) infoPrinterName [read], [atomic], [assign]

1.1.3.36 infoReleaseNumberSDKVersion

- (int) infoReleaseNumberSDKVersion [read], [atomic], [assign]

1.1.3.37 infoSerialNumber

- (NSString∗) infoSerialNumber [read], [atomic], [assign]

1.1.3.38 infoServiceEIKNumber

- (NSString∗) infoServiceEIKNumber [read], [atomic], [assign]

Generated by Doxygen



206 Class Documentation

1.1.3.39 infoServiceEndDate

- (NSString∗) infoServiceEndDate [read], [atomic], [assign]

1.1.3.40 infoTaxArray

- (NSString∗) infoTaxArray [read], [atomic], [assign]

1.1.3.41 infoTaxEnabledArray

- (NSString∗) infoTaxEnabledArray [read], [atomic], [assign]

1.1.3.42 infoTaxRatesMaxCount

- (int) infoTaxRatesMaxCount [read], [atomic], [assign]

1.1.3.43 sellParameterAbsoluteSum

- (NSString∗) sellParameterAbsoluteSum [read], [write], [atomic], [copy]

1.1.3.44 sellParameterDepartment

- (NSString∗) sellParameterDepartment [read], [write], [atomic], [copy]

1.1.3.45 sellParameterOperatorCode

- (NSString∗) sellParameterOperatorCode [read], [write], [atomic], [copy]

1.1.3.46 sellParameterOperatorPassword

- (NSString∗) sellParameterOperatorPassword [read], [write], [atomic], [copy]

1.1.3.47 sellParameterOperatorTillNumber

- (NSString∗) sellParameterOperatorTillNumber [read], [write], [atomic], [copy]

Generated by Doxygen



1.1 FMP10_ROU Class Reference 207

1.1.3.48 sellParameterPercent

- (NSString∗) sellParameterPercent [read], [write], [atomic], [copy]

1.1.3.49 sellParameterPLU

- (NSString∗) sellParameterPLU [read], [write], [atomic], [copy]

1.1.3.50 sellParameterPrice

- (NSString∗) sellParameterPrice [read], [write], [atomic], [copy]

1.1.3.51 sellParameterQuantity

- (NSString∗) sellParameterQuantity [read], [write], [atomic], [copy]

1.1.3.52 sellParameterSpecialTax

- (NSString∗) sellParameterSpecialTax [read], [write], [atomic], [copy]

1.1.3.53 sellParameterTaxGroup

- (NSString∗) sellParameterTaxGroup [read], [write], [atomic], [copy]

1.1.3.54 sellParameterTextRow1

- (NSString∗) sellParameterTextRow1 [read], [write], [atomic], [copy]

1.1.3.55 sellParameterTextRow2

- (NSString∗) sellParameterTextRow2 [read], [write], [atomic], [copy]

1.1.3.56 statusAutomaticPaperCutting

- (bool) statusAutomaticPaperCutting [read], [atomic], [assign]

Generated by Doxygen



208 Class Documentation

1.1.3.57 statusBytes

- (NSData∗) statusBytes [read], [atomic], [assign]

1.1.3.58 statusCommandNotAllowed

- (bool) statusCommandNotAllowed [read], [atomic], [assign]

1.1.3.59 statusCoverWasOpened

- (bool) statusCoverWasOpened [read], [atomic], [assign]

1.1.3.60 statusDisplayNotConnected

- (bool) statusDisplayNotConnected [read], [atomic], [assign]

1.1.3.61 statusDrawerOpened

- (bool) statusDrawerOpened [read], [atomic], [assign]

1.1.3.62 statusEIKSet

- (bool) statusEIKSet [read], [atomic], [assign]

1.1.3.63 statusEKLNearEnd

- (bool) statusEKLNearEnd [read], [atomic], [assign]

1.1.3.64 statusEKLNotEmpty

- (bool) statusEKLNotEmpty [read], [atomic], [assign]

1.1.3.65 statusEKLPrinted

- (bool) statusEKLPrinted [read], [atomic], [assign]

Generated by Doxygen



1.1 FMP10_ROU Class Reference 209

1.1.3.66 statusEndOfEKL

- (bool) statusEndOfEKL [read], [atomic], [assign]

1.1.3.67 statusEndOfKLEN

- (bool) statusEndOfKLEN [read], [atomic], [assign]

1.1.3.68 statusFieldOverflow

- (bool) statusFieldOverflow [read], [atomic], [assign]

1.1.3.69 statusFiscalMemoryFormated

- (bool) statusFiscalMemoryFormated [read], [atomic], [assign]

1.1.3.70 statusFiscalMemoryFull

- (bool) statusFiscalMemoryFull [read], [atomic], [assign]

1.1.3.71 statusFiscalMemoryMissing

- (bool) statusFiscalMemoryMissing [read], [atomic], [assign]

1.1.3.72 statusFiscalMemoryNearEnd

- (bool) statusFiscalMemoryNearEnd [read], [atomic], [assign]

1.1.3.73 statusFiscalMemoryReadError

- (bool) statusFiscalMemoryReadError [read], [atomic], [assign]

1.1.3.74 statusFiscalMemoryReadOnly

- (bool) statusFiscalMemoryReadOnly [read], [atomic], [assign]

Generated by Doxygen



210 Class Documentation

1.1.3.75 statusFiscalMemoryWriteError

- (bool) statusFiscalMemoryWriteError [read], [atomic], [assign]

1.1.3.76 statusFiscalReceiptOpened

- (bool) statusFiscalReceiptOpened [read], [atomic], [assign]

1.1.3.77 statusFMNumberSet

- (bool) statusFMNumberSet [read], [atomic], [assign]

1.1.3.78 statusGeneralErrorType1

- (bool) statusGeneralErrorType1 [read], [atomic], [assign]

1.1.3.79 statusGeneralErrorType2

- (bool) statusGeneralErrorType2 [read], [atomic], [assign]

1.1.3.80 statusInvalidCommand

- (bool) statusInvalidCommand [read], [atomic], [assign]

1.1.3.81 statusKLENNearEnd

- (bool) statusKLENNearEnd [read], [atomic], [assign]

1.1.3.82 statusLowBattery

- (bool) statusLowBattery [read], [atomic], [assign]

1.1.3.83 statusNonFiscalReceiptOpened

- (bool) statusNonFiscalReceiptOpened [read], [atomic], [assign]

Generated by Doxygen



1.1 FMP10_ROU Class Reference 211

1.1.3.84 statusNotEnoughPaper

- (bool) statusNotEnoughPaper [read], [atomic], [assign]

1.1.3.85 statusNRATerminalNotRespond

- (bool) statusNRATerminalNotRespond [read], [atomic], [assign]

1.1.3.86 statusOutOfPaper

- (bool) statusOutOfPaper [read], [atomic], [assign]

1.1.3.87 statusPrinterClockNotSet

- (bool) statusPrinterClockNotSet [read], [atomic], [assign]

1.1.3.88 statusPrinterFiscalized

- (bool) statusPrinterFiscalized [read], [atomic], [assign]

1.1.3.89 statusPrintingHeadFailure

- (bool) statusPrintingHeadFailure [read], [atomic], [assign]

1.1.3.90 statusPrintingHeadNotConnected

- (bool) statusPrintingHeadNotConnected [read], [atomic], [assign]

1.1.3.91 statusPrintingHeadOverheated

- (bool) statusPrintingHeadOverheated [read], [atomic], [assign]

1.1.3.92 statusRamCleared

- (bool) statusRamCleared [read], [atomic], [assign]

Generated by Doxygen



212 Class Documentation

1.1.3.93 statusRamError

- (bool) statusRamError [read], [atomic], [assign]

1.1.3.94 statusRotatedReceiptOpened

- (bool) statusRotatedReceiptOpened [read], [atomic], [assign]

1.1.3.95 statusSecondRollNotEnoughPaper

- (bool) statusSecondRollNotEnoughPaper [read], [atomic], [assign]

1.1.3.96 statusSeconRollNoPaperPlace

- (bool) statusSeconRollNoPaperPlace [read], [atomic], [assign]

1.1.3.97 statusSeconRollOutOfPaper

- (bool) statusSeconRollOutOfPaper [read], [atomic], [assign]

1.1.3.98 statusSerialNumberSet

- (bool) statusSerialNumberSet [read], [atomic], [assign]

1.1.3.99 statusSyntaxError

- (bool) statusSyntaxError [read], [atomic], [assign]

1.1.3.100 statusTaxRatesOk

- (bool) statusTaxRatesOk [read], [atomic], [assign]

1.1.3.101 statusTransparentDisplayMode

- (bool) statusTransparentDisplayMode [read], [atomic], [assign]

Generated by Doxygen



1.1 FMP10_ROU Class Reference 213

1.1.3.102 subtotalParameterAbsoluteSum

- (NSString∗) subtotalParameterAbsoluteSum [read], [write], [atomic], [copy]

1.1.3.103 subtotalParameterPercent

- (NSString∗) subtotalParameterPercent [read], [write], [atomic], [copy]

1.1.3.104 subtotalParameterToDisplay

- (NSString∗) subtotalParameterToDisplay [read], [write], [atomic], [copy]

1.1.3.105 subtotalParameterToPrint

- (NSString∗) subtotalParameterToPrint [read], [write], [atomic], [copy]

1.1.3.106 supportAdditionalMatrixPrint

- (bool) supportAdditionalMatrixPrint [read], [atomic], [assign]

1.1.3.107 supportAsynchronousMode

- (bool) supportAsynchronousMode [read], [atomic], [assign]

1.1.3.108 supportAutoCutPaper

- (bool) supportAutoCutPaper [read], [atomic], [assign]

1.1.3.109 supportBluetooth

- (bool) supportBluetooth [read], [atomic], [assign]

1.1.3.110 supportClientDisplay

- (bool) supportClientDisplay [read], [atomic], [assign]

Generated by Doxygen



214 Class Documentation

1.1.3.111 supportDrawerOpening

- (bool) supportDrawerOpening [read], [atomic], [assign]

1.1.3.112 supportDrawerStatus

- (bool) supportDrawerStatus [read], [atomic], [assign]

1.1.3.113 supportEIK

- (bool) supportEIK [read], [atomic], [assign]

1.1.3.114 supportEKL

- (bool) supportEKL [read], [atomic], [assign]

1.1.3.115 supportFiscalReceipts

- (bool) supportFiscalReceipts [read], [atomic], [assign]

1.1.3.116 supportFTP

- (bool) supportFTP [read], [atomic], [assign]

1.1.3.117 supportHTTP

- (bool) supportHTTP [read], [atomic], [assign]

1.1.3.118 supportIOSANumber

- (bool) supportIOSANumber [read], [atomic], [assign]

1.1.3.119 supportKLEN

- (bool) supportKLEN [read], [atomic], [assign]

Generated by Doxygen



1.1 FMP10_ROU Class Reference 215

1.1.3.120 supportNonFiscalReceipts

- (bool) supportNonFiscalReceipts [read], [atomic], [assign]

1.1.3.121 supportNRATerminal

- (bool) supportNRATerminal [read], [atomic], [assign]

1.1.3.122 supportPrintingHeadTemperatureControl

- (bool) supportPrintingHeadTemperatureControl [read], [atomic], [assign]

1.1.3.123 supportReceiptVoid

- (bool) supportReceiptVoid [read], [atomic], [assign]

1.1.3.124 supportRotatedFiscalReceipts

- (bool) supportRotatedFiscalReceipts [read], [atomic], [assign]

1.1.3.125 supportRotatedNonFiscalReceipts

- (bool) supportRotatedNonFiscalReceipts [read], [atomic], [assign]

1.1.3.126 supportSaleRowVoid

- (bool) supportSaleRowVoid [read], [atomic], [assign]

1.1.3.127 supportSecondRoll

- (bool) supportSecondRoll [read], [atomic], [assign]

1.1.3.128 supportServiceContractsInformation

- (bool) supportServiceContractsInformation [read], [atomic], [assign]

Generated by Doxygen



216 Class Documentation

1.1.3.129 supportSoftwareSwitches

- (bool) supportSoftwareSwitches [read], [atomic], [assign]

1.1.3.130 supportTCPIP

- (bool) supportTCPIP [read], [atomic], [assign]

1.1.3.131 supportTransactionsBufferForCommands

- (bool) supportTransactionsBufferForCommands [read], [atomic], [assign]

1.1.3.132 supportVoidReceipt

- (bool) supportVoidReceipt [read], [atomic], [assign]

1.1.3.133 supportVoidSale

- (bool) supportVoidSale [read], [atomic], [assign]

1.1.3.134 supportWiFi

- (bool) supportWiFi [read], [atomic], [assign]

1.1.3.135 totalParameterAmount

- (NSString∗) totalParameterAmount [read], [write], [atomic], [copy]

1.1.3.136 totalParameterPaidMode

- (NSString∗) totalParameterPaidMode [read], [write], [atomic], [copy]

1.1.3.137 totalParameterTextRow1

- (NSString∗) totalParameterTextRow1 [read], [write], [atomic], [copy]

1.1.3.138 totalParameterTextRow2

- (NSString∗) totalParameterTextRow2 [read], [write], [atomic], [copy]

Generated by Doxygen


